1 / 24

NMR as a probe of network/gel structure: chain dynamics and statistics

B 0. H. H. R. Gaussian n = 0.5. excl.vol. n = 3/5. P ( R , n ) / a.u. 2. R / R 0. 1. Structure and (thermo) dynamics of polymer networks investigated by solid-state NMR Walter Chassé, Jens-Uwe Sommer, Kay Saalwächter.

adamma
Download Presentation

NMR as a probe of network/gel structure: chain dynamics and statistics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. B0 H H R Gaussian n = 0.5 excl.vol. n = 3/5 P(R,n) / a.u. 2 R/R0 1 Structure and (thermo)dynamics of polymer networks investigated by solid-state NMR Walter Chassé, Jens-Uwe Sommer, Kay Saalwächter • NMR as a probe of network/gel structure:chain dynamics and statistics • NMR vs. mechanical and swelling properties • NMR and thermodynamics: orientation fluctuations and excluded-volume effects • Network swelling at different solvent qualities:validity of the Flory-Rehner model R x

  2. dynamic chain order parameter b(t) « n « Þ S ( n ) Not quite a liquid… NMR in entangled melts and networks, swollen or above Tg:

  3. free induction decay coupling …encoded in time-domain signal decay acquisition time HO–CH2–CH3 Fourier transformation frequency spectrum inhom. low field: • no spectral resolution • coupling: additional broadening NMR: time-domain signal, spectrum, and coupling N spin S

  4. Dstat »30 kHz (!) powder average (all b) q ± wD(b2) ± wD(b1) b2 freq. w b1 Dres»100 Hz fast-motion limit (rubber T >> Tg): wD ~ á P2(cos b) ñt ´ P2(cos q) powder average (all q) R dyn. order parameter S = Dres/Dstat = 3/(5N) freq. w • S and its distribution can be measured by time-domain (MQ) NMR • also accessible: isotropic fraction = sol, network defects chain ends KS, Prog. Nucl. Magn. Reson. Spetrosc.51 (2007), 1 Dipole-dipole coupling and chain dynamics/statistics B0 static limit (glass): wD ~P2(cos b)/rHH3 H H network chain, N segments

  5. different cure systems: Conventional: accelerator/sulphur (0.2/1) mobile impurities Efficient: accelerator/sulphur (12/1) Peroxide: dicumyl peroxide loops dangling ends sol Inhomogeneities in rubbers: defects SMQ DQ tDQ J. López Valentín, P. Posadas, A. Fernández-Torres, M. A. Malmierca, L. González, W. Chassé, KS, Macromolecules43 (2010) 4210.

  6. “zipping” reaction: R· n n n … Inhomogeneities in natural rubber nDQ= DQ/(SMQ-tail) 0.5 initial slope reflects crosslink density (~ Dres ) and its distribution tDQ J. López Valentín, P. Posadas, A. Fernández-Torres, M. A. Malmierca, L. González, W. Chassé, KS, Macromolecules43 (2010) 4210.

  7. Bruker minispec mq20, 0.5 T cheap NMR! (~ € 75.000.-) KS, J. Am. Chem. Soc. 125(2003), 14684 Model-heterogeneous networks x-link density distributions in end-linked PDMS model networks .008 100% PDMS precursors: long chains: 47k short chains: 0.8k 90% .006 70% 50% relative amplitude .004 30% % short chains 20% .002 10% 0% 0 0 400 800 1200 1600 NMR crosslink density Dres (~ S ~ 1/N) / Hz KS, J.-U. Sommer, et al., J. Chem. Phys.119 (2003), 3468 W. Chassé, J. López-Valentín, G.D. Genesky, C. Cohen, KS, J. Chem. Phys. 134 (2011) 044907

  8. swelling equilibrium: d(Felastic + Fosmotic)=0 eq. degree of swelling: Qeq = 1/fr = V/V0 =f(1/Mc) mechanical and NMR properties: 1/Mc µ n µGµDres Swelling of elastomers

  9. Me tube model entanglement effects: Mooney-Rivlin analysis Mechanics of elastomers natural rubber samples in uniaxial deformation G ~ 1/Mc ~ n sulfur content A. Vieyres, R. Pérez-Aparicio, P.-A. Albouy, O. Sanseau, KS, D.R. Long, P. Sotta, Macromolecules46 (2013) asap.

  10. 1/Mte 1/Me ~ C2 1/Me mechanics X-link density from NMR vs. swelling and mechanics 1/Me (?) swelling A. Vieyres, R. Pérez-Aparicio, P.-A. Albouy, O. Sanseau, KS, D.R. Long, P. Sotta, Macromolecules46 (2013) asap.

  11. bond-fluctuation Monte-Carlo simulations of a monomodal network (N = 25): 40 » Q = 1 ( S 0.06) b Q = 1 Q = 5.0 1.24 30 1.59 1.88 rel. weight / a.u. rel. weight 2.55 20 2.92 10 network chain density by BFM 0 0.00 0.05 0.10 0.15 0.20 0.00 0.10 0.20 0.30 0.40 chain order parameterS backbone order parameter S more general reasons for sub-affine behavior of most probable and average S? J.-U. Sommer, KS, Eur. Phys. J. E 18 (2005) 167-182 Swollen networks are inhomogeneous now: NMR study in the below-equilibrium swollen state experimental results for a monomodal PDMS network (5.2k, N = 19): KS, F. Kleinschmidt, J.-U. Sommer, Macromolecules37 (2004) 8556

  12. L unfolding link between leaves desinter- spersion affine fits affine range (universal) bulk crosslink/ constraint density entanglement/packing contribution phantom reference state Two-stage swelling process distribution-averaged segmental order note: affine prediction Dres ~ S ~ (R2/R02) ~ Q3/2 0.25 ePDMS-21 t200 IR-06 0.20 segmental orientation correlation S ~ Dres/2p / kHz 0.15 0.10 0.05 1 2 3 4 5 6 7 swelling degree Q= V/V0 J.P. Cohen-Addad, M.. Domard, G. Lorentz, J. Herz, J. Phys. France45 (1984) 575–586. W. Chassé, S. Schlögl, G. Riess, KS, Soft Matter 2013, submitted.

  13. 0.4 D D res res,n IR 0.3 NR lin. fits average Dres/2p / kHz 0.2 0.1 0.0 0.4 0.3 0.2 0.1 0.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 Phantom reference network plus entanglements entanglement/packing contribution consistent with Mooney-Rivlin C2? vulcanized NR/IR rubbers different PDMS networks slope=1.04±0.03 average Dres/2p / kHz D D res res,n ePDMS-21 ePDMS-25R rPDMS xPDMS 1/ from equilibrium swelling / mol/kg M c,app W. Chassé, S. Schlögl, G. Riess, KS, Soft Matter 2013, submitted.

  14. 1.7 1.6 1.5 1.4 1.3 1.2 effect of excluded volume! 1.1 1 0.9 styrene (q) 0.8 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 S and thermodynamics: experimental indications PDMS networks, partially swollen in good and q solvents j =1.00 j =0.31 j =0.18 p,c p,c p,c reduced coupling Dres(Q)/Dres(Q=1) toluene (good) degree of swelling Q = V/V0 W. Chassé, S. Schlögl, G. Riess, KS, Soft Matter 2013, submitted.

  15. b self-similarity arguments: • S is (almost) not dependent on position in chain • use general P(R,n) Gaussian n = 0.5 excl.vol. n = 3/5 P(R,n) / a.u. stretching ratio (relevant for swelling!) 2 R/R0 1 S and thermodynamics: theory where S is proportional to the square of the orienting entropic forceFn= F/kT = 3R/R02on a segment • depends on chain conformation statistics P(R’) R R’ J.-U. Sommer, W. Chassé, J. López-Valentín, KS, Phys. Rev. E78 (2008) 051803

  16. S and thermodynamics: proof by simulation Bond-fluctuation Monte-Carlo simulations of single chains with fixed ends and excluded-volume interaction predicted exponent/slope: 2n(1-n) = 2.85 (>> 2 for Gaussian limit) • S is reduced in good solvent! J.-U. Sommer, W. Chassé, J. López-Valentín, KS, Phys. Rev. E78 (2008) 051803

  17. same result for both models! Seq = Qeq-2n/(3n-1) ~1/x2 theor. (n = 0.6): slope = -1.5 • simple experimental test! • NMR measures blob size! (what does this imply?) Swelling in good solvent: semi-dilute state use scaling arguments (Gaussian string of blobs, excluded volume only inside blob) to predict Seq check two approaches: • c* model (de Gennes): Qeq = Q* ~ N3n-1 • affine model (Flory-Rehner): Qeq = (Req2/Nb2)3/2 R x blob size J.-U. Sommer, W. Chassé, J. López-Valentín, KS, Phys. Rev. E78 (2008) 051803

  18. toluene • test on 10 different solution and bulk, end- and randomly-linkedPDMS networks ethyl acetate 10 n-butanone no good! styrene 8 phenetole 1-propanol 8 ePDMS-21 t700 ePDMS-25R t400 6 7 ePDMS-21 t700 ePDMS-25R t100 6 4 ePDMS-21 t200 rPDMS-431 c060 5 eq. degree of swelling Qeq = Veq/V0 ePDMS-21 t020 eq. degree of swelling Qeq = Veq/V0 2 rPDMS-731 c075 4 0 • get effective qvia mastering • determine B and n´gf via fitting 3 -0.6 -0.4 -0.2 0.0 0.2 0.4 2 good poor q 1 260 280 300 320 340 360 temperature T / K reduced temperature (1-q/T) Testing F.-R.: swelling in solvents of different quality Flory-Rehner equation with fr = V0/V = 1/Qeq: effective interaction parameter: W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513

  19. apparent q temperatures are dependent on crosslink density fits to swelling master curve (excluding good-solvent region) • trends extrapolate back to q of linear-chain solutions • but: large deviation for good solvent! • good correlation of crosslink densities by NMR vs. swelling • B varies only weakly with crosslink density (B» 2.4) 5 550 4 500 1-propanol 3 450 phenetole 0.20 styrene B 400 butanone 2 ´ n g f 350 0.16 ethyl acetate toluene 300 1 0.12 q from mastering / K effective crosslink density n´gf 250 parameter 0 0.08 200 B 150 0.04 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 bulk NMR-based crosslink density (Dres/2p / kHz) bulk NMR-based crosslink density (Dres/2p / kHz) Testing F.-R.:swelling in solvents of different quality F.R. works well for q and poor solvents W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513

  20. dependence on crosslink density (once again) demonstrated • dependence could indirectly relate to concentration (1/Qeq) • further apparent (but not serious) limitations of F.-R.: • mean-field theory, no proper equation of state • high concentrations (low swelling) require higher-order virials • free-energy additivity assumption • possible additional entropy gain by “desinterspersion” Testing F.-R.: constant or variable c parameter? use thermodynamic results (q,B) to calculate apparent c = ½ -B(1-q/T) 2.0 1.5 1.0 c parameter at 293 K 1-propanol 0.5 phenetole butanone 0.0 ethyl acrylate toluene -0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 bulk NMR-based crosslink density (Dres/2p / kHz) W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513

  21. joint fit with prediction based upon Gaussian statistics throughout,use q = 308 K (solution value), result: B = 2.4 (consistent!) • scaling exponent Seq ~ Qeq-xfaithfully reflects solvent quality! 0 0.1 -2 fit not possible in good-solvent range effective exponent x Seq -4 253 K 263 K 273 K 283 K 293 K 303 K 308 K 313 K 323 K 333 K 343 K slope -2 good-solvent limit PDMS/styrene PDMS/toluene Flory-Rehner -6 -8 good solvent: F.-R. requires proper scaling treatment 0.01 -0.4 -0.2 0 0.2 0.4 -2 reduced temperature (1 - q / T) 1 10 Qeq Testing F.-R.: S from NMR at swelling equilibrum remember: Seq ~ Qeq-1.5 in good solvent, predicted by F.-R. + scaling test many PDMS networks in styrene, vary c via temperature change W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513

  22. concentration blob = Pincus (force) blob the string of blobs is fully stretched! Why is corrected F.-R. equivalent to the c* model? remember: Seq ~ Qeq-1.5 is predicted by both models NMR-detected segmental orientation fluctuation q • interpretation: • elastic free energy at Qeq (kT per chain) arises from stretching of N/g blobs • no orientation fluctuations beyond the size of a blob • NMR measures blob size! • no stretching of R in early-stage swelling, desinterspersion is an issue W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513

  23. entanglements add a • constant contribution • to n • validity region of Gaussian statistics further increased! Te ne Is the q condition observable in a network? • define “network temperature” Tn = q(1 + Cn3/8) • (derivation based upon appearance of blobs in good solvent, • beyond which excluded-volume effects are screened) • crosslinks limit the blob size • poor-good crossover occurs at higher temperature, q for linear solution is no longer visible/relevant Tn good solvent q poor solvent crosslink density n W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513

  24. W. Chassé, J.-U. Sommer, KS, Macromolecules 45 (2012) 5513 • … and thermodynamics! • excluded volume affects fluctuation statistics • note analogy to scattering: thermodynamics from concentration fluctuations • Flory-Rehner theory is not valid for swelling in good solvent • NMR results show clearly: good solvents require refined treatment of chain statistics (excluded-volume screening) • poor and q solvents: F.-R. qualitatively applicable, detail problems • signature of q of lin. solution (not surprisingly) lost • desinterspersion effects important €€€: Jens-Uwe Sommer Walter Chassé Conclusions • NMR-determined orientation fluctuations probe network structure…

More Related