190 likes | 387 Views
Geo CP Day 24 > SWBAT state the midpoint and angle bisector theorem. > SWBAT use these theorems in proofs. > SWBAT show perfection in doing basic proofs not involving midpoint and angle bisector theorems.
E N D
Geo CP Day 24 > SWBAT state the midpoint and angle bisector theorem. >SWBAT use these theorems in proofs. > SWBAT show perfection in doing basic proofs not involving midpoint and angle bisector theorems. Hmwk: Pg. 49 Self-Test 1 All; pg. 45: Class Ex 1-9 All; Study Wednesday and Thursday power points to be ready for your Quiz Friday
4 + 2y +5 = 8x + 2 Substitution Geo CP Day 24 3x + 5 = 8x + 2 Given 3x = 4 + 2y Given
3x + 5 = 4 Substitution or Transitivity Geo CP Day 24 3x + 5 = 8x + 2 Given 8x + 2 = 4 Given
Z + W = 8x + 2 Substitution or Transitivity Geo CP Day 24 3x + 5 = 8x + 2 Given 3x + 5 = Z + W Given
3x + 5 = W + 2 Substitution Geo CP Day 24 3x + 5 = 8x + 2 Given 8x = W Given
? 8x + 2 = 3x + 5 Symmetric prop = Geo CP Day 24 3x + 5 = 8x + 2 Given
5 = 5x + 2 Subtra prop = Geo CP Day 24 3x + 5 = 8x + 2 Given 3x = 3x Given
m<1 = m<3 Trans prop = Geo CP Day 24 m<1 = m< 2 Given m<2 = m<3 Given
m<1+m<2 = m<2+m<3 Addit prop = Geo CP Day 24 m<1 = m< 2 Given m<2 = m<3 Given
AX + XB = DY Substitution Geo CP Day 24 AX + XB = DZ + ZY Given DZ + ZY = DY Given
A M B Segment Addition p1 + p2 = w • M Btwn A,B • AM + MB = AB Segment Postulates and Theorems
A 1 M X 2 B Def < Bisector • m<1 = m<2 • XM Bisects <AXB • ½ m<AXB = m<1 or… Angle Postulates and Theorems < Bisector Theorem
A M B • M Midpt A,B • AM = MB • or • ½ AB = AM or MB Def. of Midpt Segment Postulates and Theorems Midpt Theorem
M B A 1 2 X Def. of a Supplementary Angles m<1 + m<2 = 180 m<AXM + m<MXB = 180
Given • m<1 = m<2 • m<3 = m<4 2. m<1 + m<3 = m<2 + m<4 Add prop = Given: m<1 = m<2; m<3 = m<4 #11 Prove: m<SRT = m<STR 3. m<1 + m<3 = m<SRT m<2 + m<4 = m<STR Angle add post 4. m<SRT = m<STR Subtit prop =
Given • m<SRT = m<STR 2. m<SRT = M<3 + m<1 m<SRT = M<4 + m<2 Angle Add Post 3. m<3 + m<1 = m<4 + m<2 Substitution Given: m<SRT = m<STR; m<3 = m<4 #14 Prove: m<1 = m<2 4. m<3 = m<4 Given 5. m<1 = m<2 Subtr prop =
1. DW = ON 1. Given 2. DW = DO + OW ON = ____ + ____ 2. Seg Addition OW WN Given: DW = ON #9 Prove: DO = WN 3. _______________ 3. Substitution DO + OW = OW + WN Reflex prop = 4. OW = OW 4. ___________ DO = WN Subtra prop = 5. _____________ 5. ___________
1. RP = TQ 1. Given PS = QS 2. RP + PS = TQ + QS 2. Add. Prop = Given: RP = TQ & PS = QS #12 Prove: RS = QS 3. RP + PS = RS 3. Seg. Add. = 4. RS = TQ + QS 4. Substitution 5. _____________ 5. ___________