1 / 52

Vineyard Preparation and Layout

Vineyard Preparation and Layout. Gerard Logan. Introduction. Vineyard Layout. Post-vineyard planning; Surveyors return to peg the corners Layout is checked against the plan “Measure twice, cut once” Further adjustments made Detailed marking out can then begin. Last Critical Assessments.

aderes
Download Presentation

Vineyard Preparation and Layout

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vineyard Preparation and Layout Gerard Logan

  2. Introduction

  3. Vineyard Layout • Post-vineyard planning; • Surveyors return to peg the corners • Layout is checked against the plan • “Measure twice, cut once” • Further adjustments made • Detailed marking out can then begin

  4. Last Critical Assessments • This is the last chance to reconfirm the following; • Waterway location • Soil type variation • Block layout • Row orientation • Headlands • Roads • Irrigation design • Dam and bore locations

  5. Creating a horizontal vineyard plan on sloping ground

  6. Calculations of Ground Distance • Pythagoras theorem • Horizontal distance 100m, 10% slope, ground distance z; • Z = √x2 + y2 • Z = √1002 + 102 • Z = √10100 • Z = 100.498m • Thus; 3m row spaces require 3.018m on the ground to give flat layout • Failure to ensure this results in curves on trellis matrix and variable row width

  7. Calculations of Ground Distance • Trigonometric calculation • If given the angle of slope (∞ = 8°), trigonometry will yield the same result; • Z = x/Cos ∞ • Z = 100/Cos 8 • Z = 100/0.992 • Z = 100.98m

  8. Squaring the vineyard block using a straight edge To ensure a rectangle has been achieved: Ensure: A - D = B - C A - B = C - D Check: A - C = B - D

  9. Soil Preparation • Soils vary greatly – especially in Hawke’s Bay • This directly impacts soil preparation • Grapevines are tough plants, but balance can be severely effected • Thus poor soil environment, produces weak, unproductive vines • Preparation and maintenance of soil is therefore critical

  10. Subsoil Treatment • Subsoil is difficult to access and difficult to alter • Poor structure however, must be rectified for drainage and root penetration

  11. Subsoil Treatment • Generally; • Sandy soils require minimal preparation • Benefits from a single rip line • Loams and light clays are easily ripped and softened for planting • Medium/Heavy clays require more ripping and cracking • Cross-ripping and gypsum addition can start improving soil structure • Permeability decreases with colour change; • Red>Brown>Yellow>Black>Grey

  12. Deep Ripping • Essential in most sites pre-planting • Fracture and loosen soil down to 1m deep • Single tined ripper fractures 1.5x its lengthin dry soil • Normally sites ripped along vine rowswith bulldozer • Bulldozer guided by; • Laser guide • Pegs • Guide line

  13. Deep Ripping • If the soil is too wet, ripping will only slice soil • If soil is too dry, ripping causes cloddy soil • Heavy soils require; • Multiple rip lines • 80cm tines placed 1m apart • Cross ripping at 90°, or better, 60° angles across the block yields optimum shatter for root penetration • Generally only the vine lines are ripped

  14. Advantages and disadvantages of strip working and cross ripping in vineyard preparation

  15. Ripping options

  16. Soil Amendments • Does the soil require amendments? • Test results • Yes? • Amendments should be made before trellis installation • Broad spectrum spreaders cheaper/more effective

  17. Soil Amendments • Acid soils • Lime (CaCO3) • Soil should be pH 6.0 • Improve Ca content and nutrient availability • Lime is best when Ca:Mg is below 3:1 (5:1 optimal) • Acid subsoils require deep banding of lime • Avoid overliming (Max. 6T/ha at once) • Monitor K, Mg, B, Zn deficiencies after liming

  18. Lime/dolomite additions required to lift the pH of 20 cm of soil

  19. Soil Amendments • Acid soils (continued) • Dolomite (CaCO3 + MgCO3) • Used to maintain balance of Ca:Mg near 5:1 when pH requires adjustment • Usually 13% Ca, 8% Mg (depends on source) • Mg deficiencies limited to topsoil due to leaching

  20. Soil Amendments • Sodic soils • Soils high (>6%) in Na • Dense and cloddy • High Na or low Ca • Soils become dense and airless • Gypsum (CaSO4) is used to provide soluble Ca • Does not change soil pH • Avoid >6T/ha, increased salt reduces water uptake

  21. Soil Amendments • Organic matter • Essential to maintain soil biology and structure • Green manure crops • Brassica’s very useful • Provide biofumigation • Forage rape, mustards and canola contain glucosinolate • Reduces nematodes, beetle larvae, cutworms and other pests

  22. Effect of Rangi rape or oat crops on root lesion nematodes

  23. Soil Amendments • Nutrition • N, K essential for young vines • Balanced levels of all macro and micronutrients required for optimal plant growth • Very important subject area in obtaining balanced vines

  24. Liebig’s Law of the minimum • Well regulated metabolism depends upon elements being provided in suitable proportions • Macronutrient • Micronutrient • Adequate quantities • Appropriate proportions • If one is limiting – growth will be restricted

  25. Greatest limiting factor • If one element alone is not available in sufficient quantities, plant performance is limited to the extent of the supply of that element. • If two elements are not available in sufficient quantities, the most deficient element will be what limits growth.

  26. Essential elements • These criteria must be meet: • Deficiency prevents plant from completing life cycle • Deficiency is specific for the element in questions • Element is directly involved in the nutrition of the plant • Constituent of an essential metabolite • Required for activity of an enzyme system

  27. Nutrients • Elements are required in different amounts • Macronutrients • N P K Ca Mg S • Micronutrients • B Cl Cu Fe Mn Mo Zn • A micronutrient deficiency has the same impact on plant growth and development as a macronutrient deficiency

  28. Deficiencies • Individual deficiency of elements can result in characteristic growth restrictions or alterations in the colour and shape of leaves and shoots. • Deficiencies are not always obvious. • By the time that visible symptoms exist, a significant loss of growth may have occurred.

  29. Role of Nutrients in Plants

  30. Nitrogen • 1-2% of dry matter, ~ 2 kg/T grapes, primary component of proteins, chlorophyll and energy transfer.

  31. Phosphorus • 0.1-0.3% of dry matter, ~ 0.6 kg/T grapes, component of cell membranes, part of compounds that fix CO2, metabolise sugars and store energy.

  32. Potassium • Up to 3% of dry matter, ~5 kg/T of grapes, provides electrical balance within cells, and maintains cell turgor, but is not part of plant structural components

  33. Manganese • A catalyst involved in chlorophyll formation and nitrogen metabolism

  34. Sulphur • Component of proteins and an enzyme co-factor

  35. Magnesium • The central element of chlorophyll

  36. Iron • Involved in chlorophyll formation and energy trapping and transfer in photosynthesis

  37. Calcium • Important part of cell walls

  38. Zinc • Catalyst for enzyme function

  39. Boron • Involved in hormone regulation of growth and pollen germination

  40. Copper • Component of enzymes for oxidation

  41. Molybdenum • Involved in nitrogen metabolism

  42. Nutrient supply • Most nutrients in a soil are unavailable (98%) • Most available nutrients are in solution (~0.2%) • Nearly all nutrients are bound to either soil humus or soil mineral fractions • Remaining fraction bound to colloids or chelates (2%) • Explains differences in nutrient supply of sand and clay soils

  43. Cations and anions • The negative charge on organic and inorganic colloids retain cations • Most anions exist organically bound in humus • Anions do not sorb well onto soil particles, and are comparatively mobile and readily leached out of soil • Tendency of ions to sorb to colloids decreases in the order: • Ca2+ Mg2+ NH3+ K+ • PO43- SO43- NO3- Cl-

  44. Nutrient uptake • Dependant on physiological characteristics of the scion and rootstock • Uptake and storage of nutrients in the permanent structures of the vine can take place throughout the growing season • Post harvest depleted nutrient supplies can be replenished.

  45. Use of nutrients by vines • Amount of nutrients extracted is relatively small • Senesced leaves are returned • Pruning's largely returned • Fruit removed • Estimated removal (kg/Ha/yr) from 20t crop • N 38-60 • P 8-12 • K 60-62 • Mg 3-10

  46. Soil analysis • Need to watch soil testing • Grapes are deep rooted and heterogeneous • Surface samples may not represent the soil profile • Not an absolute assessment • 2g of 1000 ton • Measures soluble nutrient concentration • Not necessary a reflection of nutrient availability • Nitrogen source hard to establish • N content in constant flux NO3 NH3, OM equilibria • Fertiliser applications are not even • Soil tests are good to establish pH and salinity issues

  47. pH and nutrient availability • Picture of ph and nut aval. include boxes from soil acidity lecture

  48. Tissue analysis • Gives an assessment of a plants integration with its environment • Allows comparisons • Across a range of sites and vines • Between good and poor parts of the vineyard • Where and when to sample are important factors • Nutrient concentration change over time • Young organs generally have a higher concentration • Need to account for a spray programme • A programme of leaf analysis over a number of seasons will enable a predictive measure of likely deficiency developing and will allow one to monitor the response to fertiliser application.

  49. Foliar concentrations of grapes

  50. Seasonality of nutrient uptake

More Related