300 likes | 420 Views
Cutting the Green IT Hype: Fact vs. Fiction. Kenneth G. Brill, Executive Director Uptime Institute Inc kgb@uptimeinstitute.org. Agenda. What constitutes green IT? Innovative facilities ideas Direct current versus alternating current Water cooling versus air cooling
E N D
Cutting the Green IT Hype: Fact vs. Fiction Kenneth G. Brill, Executive Director Uptime Institute Inc kgb@uptimeinstitute.org
Agenda • What constitutes green IT? • Innovative facilities ideas • Direct current versus alternating current • Water cooling versus air cooling • Free cooling: Water versus air • What is the business mission of IT? • What constitutes green IT hype?
What Is Green IT? • Energy and materials consumed in fabrication • Products (paper, hardware, components) • Data center building and site infrastructure • Waste stream disposal • Energy source sustainability • Compute energy consumption • Desktop and laptop (“beyond the data center”) • Servers, storage, network (data center) • Site infrastructure energy overhead • Power + cooling
Data Center Energy Dashboard“As Found” As Found Waste Site Infrastructure Overhead Best Practice Efficiency Data Center Energy Overhead Energy Losses Waste Hardware Overhead Best Practice IT Hardware “Plug” Load Idle Compute Productive Output Active
Data Center Energy Dashboard After a “Green Tune-up” • Increased IT asset utilization • Increased energy efficiency per IT watt • Increased use of IT and Facility Best Practices Site Infrastructure Overhead Best Practice Efficiency Data Center Energy Overhead Energy Losses Hardware Overhead Best Practice IT Hardware “Plug” Load Idle Compute Productive Output Active
Data Center Sustainability Is Determined By Zip Code • Renewable energy sources (lowest GHG) • Wind, solar, tide (each is interruptible, space/land intensive and can not be used for base load) • Geothermal, hydro (mostly continuous) • Non-renewable energy sources (lowest to highest GHG) • Nuclear, natural gas, oil, coal • Free-cooling: number of days depends on: • Zip code • Computer room temperature and relative humidity • Beware: Higher temperatures do not necessarily save energy
“LEEDs” For Data CentersLeadership In Energy Efficient Design • California Energy Commission is sponsoring development of Environmental Performance Criteria for data centers • Shifts the awarding of potential points toward energy efficiency and away from bike racks • Protocol voting this fall • Current U.S. Green Buildings Council LEED ratings are meaningless for data centers • Energy consumption 20-40x office buildings • Few people relative to building size • Outside air and windows are not necessarily good solutions for computer room cooling
Two Locations For Measuring Site Infrastructure Energy Performance • At the data center utility meter (must include all forms of energy: electric, chilled water, steam, diesel, one-pass cooling) • At the IT hardware plug (however, UPS output is easiest to measure and in most cases is much more accurate)
Power Utility UPS Powered Cooling Unit Fans Battery UPSPowered Critical Pumps UPS IN PDU OUT Primary Switchgear Chillers Computer Equipment Critical Load CoolingTowers Pumps Engine Generator Plant CoolingUnits Misc. Loads Site Infrastructure Energy FlowEnergy Overhead = IN ÷ OUT
Site Infrastructure Energy Overhead • Ratio of energy into the data center versus what is delivered to IT hardware • Overhead performance will depend upon: • Zip code (weather and season) • Equipment installed • Site asset utilization • Site infrastructure Tier level • Implementation of best practices • Green Grid calls this number PUE (under revision), but has resulted in many misleading marketing claims and growing industry confusion
Data Center Energy Sources • Electricity • Natural gas • Diesel fuel • Free cooling • Other (steam, chilled water, one-pass cooling)
Energy Versus Power • Energy is power over time • Recommend using a 12 month moving average • Peak power determines required sizing of component capacity
Site Infrastructure Energy Overhead • Uncontrollable “as-built” factors affecting SIEO • Greenness of site energy sources • Site infrastructure design and component selection • Tier level and uninterruptible cooling • Weather and seasonal variation • Controllable factors affecting SIEO • Increasing IT load as percent of site capacity • Cooling system optimization • Utilizing free-cooling capabilities • Implementation of best practices -- mainly cooling
Site Infrastructure Energy Overhead Typical Improvements • Measure Site Infrastructure Energy Overhead • Correctly implement cold/hot aisle (28 steps) • Bypass airflow <10% (seal cable cutouts, install blanking plates, perf tile qty and location)
Site Infrastructure Energy Overhead Typical Improvements • Right size cooling • Repair degraded cooling units • Correct cooling unit setpoints (eliminate dueling cooling units) • Increase computer room IT intake temperature -- 77°F • Turn off unneeded cooling • Increase chilled water temperature • Appropriately utilize free cooling • Increase site capacity utilization
AC Vs. DC Power Flow Power Utility UPS Powered Cooling Unit Fans Battery UPSPowered Critical Pumps UPS PDU Primary Switchgear Chillers Computer Equipment Critical Load CoolingTowers Pumps Engine Generator Plant CoolingUnits Misc. Loads
DC Power Improves Both Hardware And Site Infra. Overhead Efficiency As Found Waste Site Infrastructure Overhead Best Practice Efficiency Data Center Energy Overhead Energy Losses Waste Hardware Overhead Best Practice IT Hardware “Plug” Load Idle Compute Productive Output Active
Direct Current Things To Consider • IT Hardware • Availability of hardware over life of site infrastructure • Premium for hardware with DC input (5x to 8x product replacement vs. site infrastructure life • Point of use DC vs. Data Center DC • Voltage choices: 48 VDC vs. 750 VDC • Code, fault protection and skills
Cooling • Water vs. air for cooling • Water is 3,400 times more efficient • Water to hardware (mainframe cooling) • Water to back door or ceiling units (load neutralization)
High Density Cooling Solutions (continued) Liebert’s Vertical Top Cooler Supplemental System (up to 8 kWC per unit)
Free-Cooling Choices • “Open the windows” vs. Air Side or Water Side Economizers • Open vs. closed environment • Relative humidity vs. reliability • Energy cost of maintaining relative humidity in an open environment • Particulates and contamination • Impact of neighbors (fire, dust, contaminants) • Open is an OpEx play only (i.e., must still have cooling CapEx for some portion of year)
Air-Cooled Condenser Or Dry Cooler Components include: • Refrigerant or glycol coils reject heat to the atmosphere • Fans • Heat rejection capacity drops significantly on hot days
Cooling Tower -- Induced Draft Type Components include: • Tower and fill • Fan • Basin to catch cooled condenser water • Rejects most heat through water evaporation • Fan rotation can be reversed for deicing
Cooling Tower -- Forced Draft Type Components include: • Tower and fill • Fan • Basin to catch to cooled condenser water • Rejects most heat through water evaporation • Less appropriate for freezing climates
What Is The Mission Of IT? • Business value vs. energy efficiency • What will you get promoted/fired for? • Saving energy? • Causing downtime?
What Constitutes Green IT Hype?Reality Vs. Risk/Reward Balance • Energy and materials consumed in fabrication • Products (paper, hardware, components) • Data center building and site infrastructure • Waste stream disposal • Energy source sustainability • Compute energy consumption • Desktop and laptop • Servers, storage, network • Site infrastructure energy overhead • Direct Current • Water vs. air cooling • Free-cooling