1 / 47

Organi sasi Komputer Dosen Pembimbing : Khairil Anwar, ST SMIK-LPWN HAMZANWADI PANCOR

Organi sasi Komputer Dosen Pembimbing : Khairil Anwar, ST SMIK-LPWN HAMZANWADI PANCOR. Materi 3 Bus-Bus Sistem. Konsep Program. Sistem hardware tidak fleksibel Tujuan umum hardware untuk melakukan tugas-tugas yang berbeda , dengan jalan memberikan koresksi sinyal kontrol

adin
Download Presentation

Organi sasi Komputer Dosen Pembimbing : Khairil Anwar, ST SMIK-LPWN HAMZANWADI PANCOR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OrganisasiKomputerDosen Pembimbing : Khairil Anwar, STSMIK-LPWN HAMZANWADI PANCOR Materi 3 Bus-Bus Sistem

  2. Konsep Program • Sistem hardware tidak fleksibel • Tujuan umum hardware untuk melakukan tugas-tugas yang berbeda, dengan jalan memberikan koresksi sinyal kontrol • Dengan mengubah hubungan (re-wiring),berarti memberikan set sinyal kontrol baru

  3. Apa itu program? • Suatu urutan langkah-langkah kerja • Untuk tiap langkah,suatu operasi aritmatik atau logika dilakukan • Untuk tiap operasi, dibutuhkan pengaturan sinyal kontrol yang berbeda

  4. Fungsi Unit Kontrol • Biasanya setiap operasi mempunyai kode yang unik • Misal ADD, MOVE • Suatu bagian hardware menerima kode dan mengirimkan sinyal kontrol • We have a computer!

  5. Komponen - komponen • Unit Kontrol dan ALU merupakan bagian yang terdapat dalam CPU (Central Processing Unit) • Data and instruksiperlu dimasukkan ke dalam sistem untuk mendapatkan suatu keluaran • Input/output • Media penyimpanan sementara (temporary storage)kode and hasil proses diperlukan • Memori utama

  6. Komponen Komputer :Top Level View

  7. Putaran instruksi • Dua langkah: • Fetch • Execute

  8. Putaran Fetch • Program Counter (PC) menyimpan alamat instruksi berikutnya untuk di fetch • Prosessor mem-fetch-kan instruksi dari lokasi memori yang ditunjuk oleh PC • Peningkatan PC • Instruksi dikirim ke Instruction Register (IR) • Prosessor menginterpretasikan instruksi dan melakukan aksi yang diperlukan

  9. Putaran Eksekusi • Processor-memory • Data ditransfer antara CPU dan memori utama • Processor I/O • Data ditransfer antara CPU dan modul I/O • Data processing • Beberapa operasi aritmatik dan logika terhadap data • Control • Mengatur urutan-urutan operasi • Misalnya jump • Kombinasi proses di atas

  10. Contoh Eksekusi Program

  11. Putaran Instruksi - State Diagram

  12. Interupsi • Mekanisme oleh modul-modul lainnya (mis. I/O) untuk mengubah urutan normal proses yang berlangsung • Program • Misal : overflow, division by zero • Timer • Dihasilkan oleh internal processor timer • Digunakan dalam pre-emptive multi-tasking • I/O • Dari pengontrol I/O • Hardware failure • Misalnya bit paritas memori error

  13. Program Flow Control

  14. Lingkaran Interrupt • Ditambahkan ke dalam putaran instruksi • Prosessor mencek adanya interrupt • Diindikasikan oleh suatu interrupt signal • Jika tidak ada interrupt, fetch instruksi berikutnya • Jika interrupt ditunda: • Sedang mengksekusi program • Save context • Seting PC untuk memulai alamat interrupt handler routine • Proses interrupt • Kembalikan context dan lanjtkan program yang di interrupt

  15. Putaran Instruction (dengan Interrupts) - State Diagram

  16. Multiple Interrupts • Disable interrupts • Processor will ignore further interrupts whilst processing one interrupt • Interrupts remain pending and are checked after first interrupt has been processed • Interrupts handled in sequence as they occur • Define priorities • Low priority interrupts can be interrupted by higher priority interrupts • When higher priority interrupt has been processed, processor returns to previous interrupt

  17. Multiple Interrupts - Sequential

  18. Multiple Interrupts - Nested

  19. Connecting • All the units must be connected • Different type of connection for different type of unit • Memory • Input/Output • CPU

  20. Memory Connection • Receives and sends data • Receives addresses (of locations) • Receives control signals • Read • Write • Timing

  21. Input/Output Connection(1) • Similar to memory from computer’s viewpoint • Output • Receive data from computer • Send data to peripheral • Input • Receive data from peripheral • Send data to computer

  22. Input/Output Connection(2) • Receive control signals from computer • Send control signals to peripherals • e.g. spin disk • Receive addresses from computer • e.g. port number to identify peripheral • Send interrupt signals (control)

  23. CPU Connection • Reads instruction and data • Writes out data (after processing) • Sends control signals to other units • Receives (& acts on) interrupts

  24. Buses • There are a number of possible interconnection systems • Single and multiple BUS structures are most common • e.g. Control/Address/Data bus (PC) • e.g. Unibus (DEC-PDP)

  25. What is a Bus? • A communication pathway connecting two or more devices • Usually broadcast • Often grouped • A number of channels in one bus • e.g. 32 bit data bus is 32 separate single bit channels • Power lines may not be shown

  26. Data Bus • Carries data • Remember that there is no difference between “data” and “instruction” at this level • Width is a key determinant of performance • 8, 16, 32, 64 bit

  27. Address bus • Identify the source or destination of data • e.g. CPU needs to read an instruction (data) from a given location in memory • Bus width determines maximum memory capacity of system • e.g. 8080 has 16 bit address bus giving 64k address space

  28. Control Bus • Control and timing information • Memory read/write signal • Interrupt request • Clock signals

  29. Bus Interconnection Scheme

  30. Big and Yellow? • What do buses look like? • Parallel lines on circuit boards • Ribbon cables • Strip connectors on mother boards • e.g. PCI • Sets of wires

  31. Single Bus Problems • Lots of devices on one bus leads to: • Propagation delays • Long data paths mean that co-ordination of bus use can adversely affect performance • If aggregate data transfer approaches bus capacity • Most systems use multiple buses to overcome these problems

  32. Traditional (ISA)(with cache)

  33. High Performance Bus

  34. Bus Types • Dedicated • Separate data & address lines • Multiplexed • Shared lines • Address valid or data valid control line • Advantage - fewer lines • Disadvantages • More complex control • Ultimate performance

  35. Bus Arbitration • More than one module controlling the bus • e.g. CPU and DMA controller • Only one module may control bus at one time • Arbitration may be centralised or distributed

  36. Centralised Arbitration • Single hardware device controlling bus access • Bus Controller • Arbiter • May be part of CPU or separate

  37. Distributed Arbitration • Each module may claim the bus • Control logic on all modules

  38. Timing • Co-ordination of events on bus • Synchronous • Events determined by clock signals • Control Bus includes clock line • A single 1-0 is a bus cycle • All devices can read clock line • Usually sync on leading edge • Usually a single cycle for an event

  39. Synchronous Timing Diagram

  40. Asynchronous Timing Diagram

  41. PCI Bus • Peripheral Component Interconnection • Intel released to public domain • 32 or 64 bit • 50 lines

  42. PCI Bus Lines (required) • Systems lines • Including clock and reset • Address & Data • 32 time mux lines for address/data • Interrupt & validate lines • Interface Control • Arbitration • Not shared • Direct connection to PCI bus arbiter • Error lines

  43. PCI Bus Lines (Optional) • Interrupt lines • Not shared • Cache support • 64-bit Bus Extension • Additional 32 lines • Time multiplexed • 2 lines to enable devices to agree to use 64-bit transfer • JTAG/Boundary Scan • For testing procedures

  44. PCI Commands • Transaction between initiator (master) and target • Master claims bus • Determine type of transaction • e.g. I/O read/write • Address phase • One or more data phases

  45. PCI Read Timing Diagram

  46. PCI Bus Arbitration

  47. Foreground Reading • Stallings, chapter 3 (all of it) • www.pcguide.com/ref/mbsys/buses/ • In fact, read the whole site! • www.pcguide.com/

More Related