120 likes | 246 Views
Joint ab -initio and polycrystal homogenization modeling for designing biomaterials (Ti-Nb) and ultra light weight metals (Mg-Li). D. Ma , M. Friak , A. Counts F. Roters , P. Eisenlohr , J. Neugebauer, D. Raabe. 27. October 2009 , MS&T, Pittsburgh. Overview.
E N D
Joint ab-initio and polycrystal homogenization modeling for designing biomaterials (Ti-Nb) and ultra light weight metals (Mg-Li) D. Ma , M. Friak, A. Counts F. Roters, P. Eisenlohr, J. Neugebauer,D. Raabe 27. October 2009, MS&T, Pittsburgh
Overview • Ab-initio-basedpolycrystalstiffness • Ti-Nb • Mg-Li Dierk Raabe, MS&T, Pittsburgh, 27. Oct. 2009, MPIE
Scales: example of mechanical properties Length [m] Top down 100 Scale bridging 10-3 Mean field and boundary conditions (FE, FD, FFT) Crystals (CPFEM, YS, HT) 10-6 Bottom up Dislocations (DD, CA, KMC) 10-9 Structure of defects (DFT, MD) Structure of matter (DFT) Time [s] 10-9 103 10-15 10-3 D. Raabe: Advanced Materials 14 (2002) p. 639
From ab-initioto polycrystal elasticity Gb, Gb2 , ... * DFT: density functional theory Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475
Crystal elasticity FEM – multiscale integrator Raabe, Zhao, Park, Roters: Acta Mater. 50 (2002) 421
Overview • Ab-initio-basedpolycrystalstiffness • Ti-Nb • Mg-Li Dierk Raabe, MS&T, Pittsburgh, 27. Oct. 2009, MPIE
20-25 GPa 115 GPa Motivation – BCC Ti alloys as biomaterials (implants) • Strategy for lower elastic stiffness: • -Ti (BCC: Ti-Nb, Ti-Mo, Ti-V,…) • Bio-compatible alloy elements Ti Ti-Nb • Human bone: 20-25 GPa • Current implant alloys (Ti, Ti-6Al-4V): 115 GPa • Stress shielding (elastic mismatch), bone degeneration, interface abrasion
From ab-initioto polycrystal elasticity plane wave pseudopotential (VASP) cutoff energy: 170 eV 8×8×8 Monkhorst supercells of 2×2×2 cubic unit cells total of 16 atoms 48 bcc and 28 hcp configurations Hershey homogenization crystal elasticity FEM Approach: • DFT*: design elastically soft BCC Ti; understand ground state; obtain singlecrystalelasticconstants • Polycrystal coarse graining including texture and anisotropy Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475
Az= 2 C44/(C11 − C12) Young‘s modulus surface plots Ti-18.75at.%Nb Ti-25at.%Nb Ti-31.25at.%Nb Pure Nb [001] [100] [010] Az=3.210 Az=2.418 Az=1.058 Az=0.5027 Elasticproperties: Ti-Nb system Hershey FEM Ma, Friák, Neugebauer, Raabe, Roters: phys. stat. sol. B 245 (2008) 2642
Ultra-sonic measurement exp. polycrystals bcc+hcp phases theory: bcc polycrystals • not homogeneous • textures XRD DFT Elasticproperties / Hershey homogenization Ti-hcp: 117 GPa polycrystal Young`s modulus (GPa) MECHANICAL INSTABILITY!! D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Acta Materialia 55 (2007) 4475 Raabe, Sander, Friák, Ma, Neugebauer, ActaMaterialia 55 (2007) 4475
Comparisonofmethods Young`s modulus Ma, Friák, Neugebauer, Raabe, Roters: phys. stat. sol. B 245 (2008) 2642
323points, 200 grains, FEM (surface), tensile strain distribution stress distribution CEFEM CEFEM • Ti: 115 GPa • Ti-20wt.%Mo-7wt.%Zr-5wt.%Ta: 81.5 GPa • Ti-35wt.%Nb-7wt.%Zr-5wt.%Ta: 59.9 GPa (elastic isotropic) Ma, Friák, Neugebauer, Raabe, Roters: phys. stat. sol. B 245 (2008) 2642