210 likes | 374 Views
BX663 (2.4). rotation- dominated. BX 610 (2.2). -120. BX 404 (2.03). +160. K20-5 (2.2). MD 41 (2.2). -170. 30. -170. -5. 170. BzK 15504 (2.4). ZC782941 (2.2). SA12 8768 (2.2). SA12 6339 (2.3). -200. +160. D3a 6397 (1.51). 170. -50. 140. 30. K20-8 (2.2). BzK 6004 (2.4).
E N D
BX663 (2.4) rotation- dominated BX 610 (2.2) -120 BX 404 (2.03) +160 K20-5 (2.2) MD 41 (2.2) -170 30 -170 -5 170 BzK 15504 (2.4) ZC782941 (2.2) SA12 8768 (2.2) SA12 6339 (2.3) -200 +160 D3a 6397 (1.51) 170 -50 140 30 K20-8 (2.2) BzK 6004 (2.4) -140 -160 -260 - 90 K20-6 (2.2) 80 ZC1101592 (1.41) 200 240 GK 167 (2.58) -100 SA12 6192 (1.51) BX 405 (2.03) BX 502 (2.16) 150 70 +210 40 -45 200 -60 35 BX482 (2.2) -60 + 130 -70 -240 GK2471 (2.43) BzK 4165 (1.7) 80 120 -35 170 -20 BX389 (2.2) -170 -170 30 1” (8 kpc) -120 D3a 4751 (2.27) -30 50 70 merger-like BM 1163 (1.41) 30 BX 599 (2.33) K20-9 (2.0) -70 100 -160 increasing dispersion -30 BX528 (2.3) GK2252 (2.41) +240 K20-7 (2.2) -80 280 + 160 GK 2113 (1.61) -80 70 -70 -70 +380 + 110 -280 SINS 70 Galaxies 1.5-2.5 Disk: 30-40% (v/σ ~ 2 – 4) Disp: 30% (v/σ < 1) Merger: 20-30% Forster Schreiber et al. 09 Shapiro et al. 09 SINS Förster, Bouché,Cresci, Genzel, Shapiro et al. 06-08
SINS “rotators” Cresci et al. 09
SINS “rotators” Cresci et al. 09
SINS “rotators” Cresci et al. 09
Étude des galaxies à faible masse MUSE Workshop March 18/19 N. Bouché (MPE LATT)
The Hubble sequence still unexplained Need to study progenitors!
Why study low-mass galaxies? VVDS SINS LBG Ocvirk, Teyssier 08
Where are the baryons? M halo S. White & co (SDSS)
Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07 Z=0 SDSS New insights in galaxy formation see H. Flores, M. Puech, L. Tresse • Scaling relations (SFR-Mass, TF, etc..) Puech 08, Cresci 09 Mergers not dominant
Questions • Why SFR ~ 200 M/yr at z=2? • Origin of scaling relations: TF, SFR-Mass? • Role of feedback in low-mass end (z=2)? • What happens at z>5 ?
high-sigma halos: fed by relatively thin, dense filaments → cold flows typical halos: reside in relatively thick filaments, fed ~spherically → no cold flows the millenium cosmological simulation
Insights from Millennium Simulation dM/dt ~ 35 Mh1.0 (1+z)2.2 SFR =ε 0.18 dMh/dt ε must be ~1 EPS DM accretion rate SINS M halo Genel et al. 08
Prediction: >>50% baryons accreted as cold gas! (but clumpy) Dark + baryon accretion
Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07 EPS Z=0 SDSS New insights in galaxy formation see H. Flores, M. Puech, L. Tresse • Scaling relations (SFR-Mass, TF, etc..)
f_baryon at z=0 Toy model prediction Strongly tied to only assumption Observation at z=0
@z=2.2: 50% @z=1 : 30% @z=0 : 10% 30-50% Tacconi/Daddi 30% Tacconi 10% Ω(HI)/Ω(star) Gas fractions Observations Accretion prediction
Questions • Why SFR ~ 200 M/yr at z=2? • Origin of scaling relations: TF, SFR-Mass? • Role of feedback in low-mass end (z=2)? • What happens at z>5 ?
Galaxy formation with MUSE Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies • Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) • High redshift Lyman alpha emitters • Cold accretion
Galaxy formation with MUSE Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies • Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) • High redshift Lyman alpha emitters • Cold accretion
Galaxy formation with MUSE Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies • Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) • High redshift Lyman alpha emitters • Cold accretion (z~3) 1’
How? • Study low-mass galaxies at z~1 [OII] • Study filaments at z~3 [Lya] • LAE at z~4,5 • LAE at z>6 SF Verhamme UDF Need KMOS (OII) MDF Need KMOS / Hawk-I etc MDF Measure ε_SFR (M halo)