1 / 21

+160

BX663 (2.4). rotation- dominated. BX 610 (2.2). -120. BX 404 (2.03). +160. K20-5 (2.2). MD 41 (2.2). -170. 30. -170. -5. 170. BzK 15504 (2.4). ZC782941 (2.2). SA12 8768 (2.2). SA12 6339 (2.3). -200. +160. D3a 6397 (1.51). 170. -50. 140. 30. K20-8 (2.2). BzK 6004 (2.4).

adler
Download Presentation

+160

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BX663 (2.4) rotation- dominated BX 610 (2.2) -120 BX 404 (2.03) +160 K20-5 (2.2) MD 41 (2.2) -170 30 -170 -5 170 BzK 15504 (2.4) ZC782941 (2.2) SA12 8768 (2.2) SA12 6339 (2.3) -200 +160 D3a 6397 (1.51) 170 -50 140 30 K20-8 (2.2) BzK 6004 (2.4) -140 -160 -260 - 90 K20-6 (2.2) 80 ZC1101592 (1.41) 200 240 GK 167 (2.58) -100 SA12 6192 (1.51) BX 405 (2.03) BX 502 (2.16) 150 70 +210 40 -45 200 -60 35 BX482 (2.2) -60 + 130 -70 -240 GK2471 (2.43) BzK 4165 (1.7) 80 120 -35 170 -20 BX389 (2.2) -170 -170 30 1” (8 kpc) -120 D3a 4751 (2.27) -30 50 70 merger-like BM 1163 (1.41) 30 BX 599 (2.33) K20-9 (2.0) -70 100 -160 increasing dispersion -30 BX528 (2.3) GK2252 (2.41) +240 K20-7 (2.2) -80 280 + 160 GK 2113 (1.61) -80 70 -70 -70 +380 + 110 -280 SINS 70 Galaxies 1.5-2.5 Disk: 30-40% (v/σ ~ 2 – 4) Disp: 30% (v/σ < 1) Merger: 20-30% Forster Schreiber et al. 09 Shapiro et al. 09 SINS Förster, Bouché,Cresci, Genzel, Shapiro et al. 06-08

  2. SINS “rotators” Cresci et al. 09

  3. SINS “rotators” Cresci et al. 09

  4. SINS “rotators” Cresci et al. 09

  5. Étude des galaxies à faible masse MUSE Workshop March 18/19 N. Bouché (MPE  LATT)

  6. The Hubble sequence still unexplained  Need to study progenitors!

  7. Why study low-mass galaxies? VVDS SINS LBG Ocvirk, Teyssier 08

  8. Where are the baryons? M halo S. White & co (SDSS)

  9. Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07 Z=0 SDSS New insights in galaxy formation see H. Flores, M. Puech, L. Tresse • Scaling relations (SFR-Mass, TF, etc..) Puech 08, Cresci 09 Mergers not dominant

  10. Questions • Why SFR ~ 200 M/yr at z=2? • Origin of scaling relations: TF, SFR-Mass? • Role of feedback in low-mass end (z=2)? • What happens at z>5 ?

  11. high-sigma halos: fed by relatively thin, dense filaments → cold flows typical halos: reside in relatively thick filaments, fed ~spherically → no cold flows the millenium cosmological simulation

  12. Insights from Millennium Simulation dM/dt ~ 35 Mh1.0 (1+z)2.2 SFR =ε 0.18 dMh/dt ε must be ~1 EPS DM accretion rate SINS M halo Genel et al. 08

  13. Prediction: >>50% baryons accreted as cold gas! (but clumpy) Dark + baryon accretion

  14. Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07 EPS Z=0 SDSS New insights in galaxy formation see H. Flores, M. Puech, L. Tresse • Scaling relations (SFR-Mass, TF, etc..)

  15. f_baryon at z=0 Toy model prediction Strongly tied to only assumption Observation at z=0

  16. @z=2.2: 50% @z=1 : 30% @z=0 : 10% 30-50% Tacconi/Daddi 30% Tacconi 10% Ω(HI)/Ω(star) Gas fractions Observations Accretion prediction

  17. Questions • Why SFR ~ 200 M/yr at z=2? • Origin of scaling relations: TF, SFR-Mass? • Role of feedback in low-mass end (z=2)? • What happens at z>5 ?

  18. Galaxy formation with MUSE  Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies • Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) • High redshift Lyman alpha emitters • Cold accretion

  19. Galaxy formation with MUSE  Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies • Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) • High redshift Lyman alpha emitters • Cold accretion

  20. Galaxy formation with MUSE  Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies • Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) • High redshift Lyman alpha emitters • Cold accretion (z~3) 1’

  21. How? • Study low-mass galaxies at z~1 [OII] • Study filaments at z~3 [Lya] • LAE at z~4,5 • LAE at z>6 SF Verhamme UDF Need KMOS (OII) MDF Need KMOS / Hawk-I etc MDF Measure ε_SFR (M halo)

More Related