150 likes | 408 Views
A survey of Face Recognition Technology. Wei-Yang Lin May 07, 2003. Road Map. Introduction Challenge in Face Recognition variation in pose Variation in illumination Some recently works in FRT Discussion. Introduction. FRT is a research area spanning several disciplines.
E N D
A survey of Face Recognition Technology Wei-Yang Lin May 07, 2003
Road Map • Introduction • Challenge in Face Recognition • variation in pose • Variation in illumination • Some recently works in FRT • Discussion
Introduction • FRT is a research area spanning several disciplines. • Depending on the specific application, FRT has different level of difficulty.
Challenges in FRT • The recent FERET test has revealed that there are at least two major challenges: • The illumination variation problem • The pose variation problem
Illumination variation • Images of the same face appear differently due to the change in lighting • Naive Solution: • discarding the first few eigenfaces
Pose Variation • Basically, the existing solution can be divided into three types: • multiple images in both training stage and recognition stage • multiple images in training stage, but only one image in recognition stage • single image based methods
Shape-from-Shading • The basic idea of SFS is to infer the 3D surface of object from the shading information in image. • Lambertian model has been used extensively in computer vision community for the SFS problem.
Illumination cone • Illumination cone is a subspace covers the variation in illumination. Basis images Synthetic images
Linear Object Class • How can we recognize a face under different pose or expression when only one picture is given?
Curvature-based FRT • Use the curvature of surface to perform face recognition • This is a great idea since the value of curvature at a point on the surface is invariant under the variation of viewpoint and illumination
Elastic Bunch Graph • use Gabor wavelet transform to extract face features so that the recognition performance can be invariant to the variation in poses.
2D-3D Face Recognition • Almost all existing systems rely on either 2D images or 3D range data. • 3D shape can compensate for the lack of depth information in 2D image. • Therefore, integrating 2D and 3D information will be a possible way to improve the recognition performance.