180 likes | 270 Views
The Online Labeling Problem. Jan Bul ánek ( Institute of Math , Prague) M artin Babka (Charles University) Vladimír Čunát (Charles University ) Michal Kouck ý ( Institute of Math , Prague ) Michael Saks (Rutgers University). Sorted Arrays. Basis of many algorithms
E N D
The Online LabelingProblem Jan Bulánek (Institute of Math, Prague) Martin Babka (Charles University) Vladimír Čunát(Charles University) Michal Koucký (Institute of Math, Prague) Michael Saks(Rutgers University)
Sorted Arrays • Basis of many algorithms • Easy to work with • Dynamization? Online Labeling
Storing elements in the array 12 Gaps in the array Muzepohnout co chce 1 -5 32 7 14 … Stream of nelements 12 7 11 15 Array of size Θ(n)
Online labeling Input: • A streamofnnumbers • An array of size m • For the size Θ(n) File maintenance problem Want: • maintain a sorted array of all already seen items • minimize the total number of item moves (cost) Rictzediry mi sami o sobenestaci Naïve solution O(n)per insertion
Applications Many applications, e.g.: [Bender, Demaine, Farach-Colton ’00] • Cache-oblivous B-trees [Emek, Korman’11] • Distributed Controllers • Lower bounds
Linear array algorithm [Itai, Konheim, Rodeh ’81] • O(log2n)per insertion, amortized [Itai, Katriel ’07] • Simpler algorithm Basic ideas • Small gaps • Spread items evenly • Density threshold function
Algorithm for linear arrays – cont. How to find segment to rearrange Too dense Rearrange items evenly Good density
Upper bounds TIGHT!! Anderssonlai
Lower Bounds [Zhang ’93] • m=O(n) • Ω(log2n) per insertion, amortized • Only smooth strategies [Dietz, Seiferas, Zhang ’94] • m=n1+Θ(1) • Ω(logn) per insertion, amortized • Proof contains a gap
Lower Bounds – cont. [B., Koucký, SaksSTOC’12] • Allstrategies • Uses some ideas from [Zhang 93]
Lower Bounds – proof technique Adversary • Generates input stream • Reacts on the state of the array • Inserts to dense areas Only deterministic case
Lower Bounds – cont. [Babka, B., Čunát, Koucký, SaksESA’12] • Allstrategies • Fillsthe gap in [DSZ ’04] and extends their result • Tight bounds for the bucketing game
Lower Bounds – cont. [Babka, B., Čunát, Koucký, Saks 12, manuscript] • Allstrategies • Extends results of [BKS 12]
Limited universe • Trivial for r<m U m
Limited universe – cont. • Maybe easier for r small U
Open problems • Randomized algorithms? • Limited universe m log n The End!