270 likes | 424 Views
ENGM 792 Network Flow Programming. Maximum Flow Solutions. Maximum Flow Models. (Flow, Capacity ). (4,4). 2. 4. (6,8). (4,10). (2,2). (0,3). (0,8). 6. 1. (5,7). (3,6). (3,3). 5. 3. Maximum Flow Models. (Flow, Capacity ) [External Flow]. Maximal Flow
E N D
ENGM 792Network Flow Programming Maximum Flow Solutions
Maximum Flow Models (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3
Maximum Flow Models (Flow, Capacity) [External Flow] Maximal Flow Capacity is only relevant parameter. Find maximal flow from source to sink. (4,4) 2 4 (6,8) (4,10) [-M] [M] (2,2) (0,3) (0,8) 6 S S 1 (5,7) (3,6) (3,3) 5 3
Maximum Flow • Find a flow augmenting path defined by a sequence of arcs P =(k1, k2,.v.v.vkp) • Determine the maximum flow increase along the path • Change the flow in the arcs on the path • Repeat until no flow augmenting paths can be found
Maximum Flow • Find an augmenting path • Determine the maximum flow augmentation possible • Augment flow by that amount
Maximum Flow Models Find a path top to bottom that has Additional capacity. Increase flow to Available capacity (Flow, Capacity) (0,4) 2 4 (0,8) (0,10) (0,2) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (4,8) (4,10) (0,2) (4) (4) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (4,8) (4,10) (0,2) (4) (4) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (4,8) (4,10) (0,2) (4) (6) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (4) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (4) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (4) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (4) (0,3) (0,8) 6 1 (0,7) (0,6) (0,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (9) (9) (0,3) (0,8) 6 1 (3,7) (3,6) (3,3) 5 3
Augmented Path (Flow, Capacity) Arc 2-4 at capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (9) (0,3) (0,8) 6 1 (3,7) (3,6) (3,3) 5 3
Augmented Path (Flow, Capacity) Arc 2-4 at capacity Arc 2-5 at capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (9) (0,3) (0,8) 6 1 (3,7) (3,6) (3,3) 5 3
Augmented Path (Flow, Capacity) Arc 2-4 at capacity Arc 2-5 at capacity Arc 3-5 at capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (9) (0,3) (0,8) 6 1 (3,7) (3,6) (3,3) 5 3
Augmented Path (Flow, Capacity) No other path exists start to end that has additional capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (9) (0,3) (0,8) 6 1 (3,7) (3,6) (3,3) 5 3
Augmented Path (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (9) (9) (0,3) (0,8) 6 1 (3,7) (3,6) (3,3) 5 3
Minimum Cut Algorithm • Find all possible cuts source to sink • Find the cut that has minimal capacity • Minimal capacity cut = maximum flow
Minimum Cut Algorithm (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 14)
Minimum Cut Algorithm (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 11)
Minimum Cut Algorithm (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 11)
Minimum Cut Algorithm (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 11)
Minimum Cut Algorithm (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 17)
Maximum Flow Models (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 9)
Maximum Flow Models (Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (5,7) (3,6) (3,3) 5 3 (Capacity = 9)