1 / 65

Relativistic Faddeev Calculations for Elastic Nd Scattering with Kharkov Potential

Explore relativistic calculations for Nd scattering with boost corrections and the Kharkov potential, identifying relativistic potentials and Triton binding energies.

adriennec
Download Presentation

Relativistic Faddeev Calculations for Elastic Nd Scattering with Kharkov Potential

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Relativistic Faddeev calculations for elastic Nd scattering with Kharkov potential H. Kamada (Kyushu Institute of Technology, Japan)H. Witala , J. Golak, R. Skibinski (Jagiellonian University, Poland) O. Shebeko , A. Arslanaliev (Kharkov Institute of Physics and Technology, NAS of Ukraine, Kharkiv, Ukraine) N APFB 2017 2017 –AUG-24~30, Guilin, CHINA N P

  2. Outline • §1 Motivation • §2 RelativisticCalculation • §3 Identificationto the relativistic potential • §4 BoostCorrection • §5 Kharkovpotential • §6 Tritonbinding energy • §7 Ndelastic scattering • §8 Summaryand Outlook

  3. §1 Motivation The nonrelativistic theoretical prediction of the Nd scattering backward cross section beyond 200MeV/u is getting to be poor even including the 3-body force (FM type).What is missing?

  4. Phys. Rev. C 57, 2111 (1998)

  5. §2 Relativistic Calculation§2 Relativistic Calculation • There are essentially two different approaches to relativistic three-nucleon calculation: • ①a manifestly covariant scheme linked to a field theoretical approach. • ② a scheme based on relativistic quantum mechanics on spacelike hypersurfaces (including the light front) in Minkowski space.

  6. B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1952). • Within the second scheme② the relativistic Hamiltonian for on-the-mass-shell particles consists of relativistic kinetic energies and two- and many-body interactions including their boost corrections, which are dictated by the Poincare algebra. ’

  7. What is the boost correction? A potential in an arbitrary moving frame (q≠0)is different, which enters a relativistic Lippmann-Schwinger equation. q≠0 Vnr Vnr (q=0) (q=0)≠(q≠0)

  8. Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

  9. Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

  10. Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

  11. Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

  12. §3 Identification totherelativistic potential

  13. start “Realistic NN potential” Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 Identification Type 2 yes Boost potential Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end

  14. §3 Identification totherelativistic potential Few-BodySyst.(2010)48,109

  15. Type 1 :(pseudo) Relativistic potential “Scale-transformation from nonrelativity to relativity ” Scale transformation Phys. Rev. Lett. 80, 2457(1998)

  16. Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^

  17. Type 2 Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))

  18. nr Sandwiching it between <k | and |k’>, we get

  19. Iteration Method Physics Letters B655, 119-125 (2007),(nucl-th/0703010)

  20. Convergence to the iteration

  21. §4 BoostCorrection Boosted Hamiltonian in 2N system Physics Letters B655, 119-125 (2007),(nucl-th/0703010)

  22. q=0 fm-1 q=10 fm-1 Real Part q=20 fm-1 CD-Bonn potential 1S0 partial wave E=350MeV Half-shell t-matrix

  23. Imaginary Part q=20 fm-1 q=10 fm-1 CD-Bonn potential 1S0 partial wave E=350MeV Half-shell t-matrix q=0 fm-1

  24. §5 Kharkovpotential

  25. Kharkov Potential I. Dubovyk, O. Shebeko, Few-Body Sys. 48, 109 (2010).

  26. Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

  27. start Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 IdentificationType 2 yes Kharkov Boost potential Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end

  28. Deuteron Wave Function S-Wave Solid:Kharkov Dotted: CDBonn 1/2 -1 pψ(p)[fm ] p[fm ]

  29. Deuteron Wave Function D-Wave Solid:Kharkov Dotted: CDBonn 1/2 -1 pψ(p)[fm ] p[fm ]

  30. §6 Triton Binding Energy • Type 1 • Type 2 Coester-Pieper-Serduke (CPS) • Type 0 no identification “Scale-transform it from nonrelativity to relativity ” (ST)

  31. Triton binding energies (Type1) MeV Rel. Nonrel. Phys. Rev. C66, 044010 (2002) 5ch calculation

  32. Triton binding energies (Type2) MeV Rel. Nonrel. 0.05 0.11 0.07 0.10 0.08 0.07 -6.97 -8.22 -7.58 -7.90 -7.68 -7.59 -7.02 -8.33 -7.65 -8.00 -7.76 -7.66 5ch calculation EPJ Web of Conferences 3, 05025 (2010)

  33. Triton binding energies (Type0)of Kharkov potential Type 2 5ch calculation H.Kamada, O. Shebeko, A. Arslanaliev, Few-Body Syst. 58 (2017), 70.

  34. Triton binding energies (Type2)of N4LO and Kharkov pot. (MeV) N4LO pot. : E. Epelbaum et al., Eur. Phys. J. A51, 53 (2015) ; E. Epelbaumet al., Phys. Rev. Lett. 115, 122301 (2015) 42ch calculation

  35. Triton Binding Energy [MeV] Type1 Type2 Kharkov(UCT1) Kharkov(UCT2) ←Exp. CDBonn [MeV]

  36. §7 Elastic Nd scattering§7 Elastic Nd scattering

  37. Comparison I • Relativistic and non-relativistic (without 3NF) • Kharkov potential (UCT1) • dσ/dΩdifferential cross section • Ay proton vector polarization • iT11 deuteron vector polarization • T20, T21, T22 deuteron vector polarization • Ep=5,13,65,135 MeV

  38. 5MeV 13MeV 65MeV 135MeV

  39. 5MeV 13MeV 65MeV 135MeV

  40. 13MeV 5MeV 65MeV 135MeV

  41. 13MeV 5MeV 65MeV 135MeV

  42. 5MeV 13MeV 65MeV 135MeV

  43. 5MeV 13MeV 135MeV 65MeV

  44. 5MeV 13MeV 65MeV 135MeV

  45. Phys. Rev. C 57, 2111 (1998)

  46. Θc.m.=180deg

More Related