650 likes | 664 Views
Explore relativistic calculations for Nd scattering with boost corrections and the Kharkov potential, identifying relativistic potentials and Triton binding energies.
E N D
Relativistic Faddeev calculations for elastic Nd scattering with Kharkov potential H. Kamada (Kyushu Institute of Technology, Japan)H. Witala , J. Golak, R. Skibinski (Jagiellonian University, Poland) O. Shebeko , A. Arslanaliev (Kharkov Institute of Physics and Technology, NAS of Ukraine, Kharkiv, Ukraine) N APFB 2017 2017 –AUG-24~30, Guilin, CHINA N P
Outline • §1 Motivation • §2 RelativisticCalculation • §3 Identificationto the relativistic potential • §4 BoostCorrection • §5 Kharkovpotential • §6 Tritonbinding energy • §7 Ndelastic scattering • §8 Summaryand Outlook
§1 Motivation The nonrelativistic theoretical prediction of the Nd scattering backward cross section beyond 200MeV/u is getting to be poor even including the 3-body force (FM type).What is missing?
§2 Relativistic Calculation§2 Relativistic Calculation • There are essentially two different approaches to relativistic three-nucleon calculation: • ①a manifestly covariant scheme linked to a field theoretical approach. • ② a scheme based on relativistic quantum mechanics on spacelike hypersurfaces (including the light front) in Minkowski space.
B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1952). • Within the second scheme② the relativistic Hamiltonian for on-the-mass-shell particles consists of relativistic kinetic energies and two- and many-body interactions including their boost corrections, which are dictated by the Poincare algebra. ’
What is the boost correction? A potential in an arbitrary moving frame (q≠0)is different, which enters a relativistic Lippmann-Schwinger equation. q≠0 Vnr Vnr (q=0) (q=0)≠(q≠0)
Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.
Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.
Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.
Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.
start “Realistic NN potential” Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 Identification Type 2 yes Boost potential Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end
§3 Identification totherelativistic potential Few-BodySyst.(2010)48,109
Type 1 :(pseudo) Relativistic potential “Scale-transformation from nonrelativity to relativity ” Scale transformation Phys. Rev. Lett. 80, 2457(1998)
Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^
Type 2 Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))
nr Sandwiching it between <k | and |k’>, we get
Iteration Method Physics Letters B655, 119-125 (2007),(nucl-th/0703010)
§4 BoostCorrection Boosted Hamiltonian in 2N system Physics Letters B655, 119-125 (2007),(nucl-th/0703010)
q=0 fm-1 q=10 fm-1 Real Part q=20 fm-1 CD-Bonn potential 1S0 partial wave E=350MeV Half-shell t-matrix
Imaginary Part q=20 fm-1 q=10 fm-1 CD-Bonn potential 1S0 partial wave E=350MeV Half-shell t-matrix q=0 fm-1
Kharkov Potential I. Dubovyk, O. Shebeko, Few-Body Sys. 48, 109 (2010).
Two-body t-matrix Nonrelativistic LS eq. nr nr E) nr nr E) E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.
start Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 IdentificationType 2 yes Kharkov Boost potential Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end
Deuteron Wave Function S-Wave Solid:Kharkov Dotted: CDBonn 1/2 -1 pψ(p)[fm ] p[fm ]
Deuteron Wave Function D-Wave Solid:Kharkov Dotted: CDBonn 1/2 -1 pψ(p)[fm ] p[fm ]
§6 Triton Binding Energy • Type 1 • Type 2 Coester-Pieper-Serduke (CPS) • Type 0 no identification “Scale-transform it from nonrelativity to relativity ” (ST)
Triton binding energies (Type1) MeV Rel. Nonrel. Phys. Rev. C66, 044010 (2002) 5ch calculation
Triton binding energies (Type2) MeV Rel. Nonrel. 0.05 0.11 0.07 0.10 0.08 0.07 -6.97 -8.22 -7.58 -7.90 -7.68 -7.59 -7.02 -8.33 -7.65 -8.00 -7.76 -7.66 5ch calculation EPJ Web of Conferences 3, 05025 (2010)
Triton binding energies (Type0)of Kharkov potential Type 2 5ch calculation H.Kamada, O. Shebeko, A. Arslanaliev, Few-Body Syst. 58 (2017), 70.
Triton binding energies (Type2)of N4LO and Kharkov pot. (MeV) N4LO pot. : E. Epelbaum et al., Eur. Phys. J. A51, 53 (2015) ; E. Epelbaumet al., Phys. Rev. Lett. 115, 122301 (2015) 42ch calculation
Triton Binding Energy [MeV] Type1 Type2 Kharkov(UCT1) Kharkov(UCT2) ←Exp. CDBonn [MeV]
§7 Elastic Nd scattering§7 Elastic Nd scattering
Comparison I • Relativistic and non-relativistic (without 3NF) • Kharkov potential (UCT1) • dσ/dΩdifferential cross section • Ay proton vector polarization • iT11 deuteron vector polarization • T20, T21, T22 deuteron vector polarization • Ep=5,13,65,135 MeV
5MeV 13MeV 65MeV 135MeV
5MeV 13MeV 65MeV 135MeV
13MeV 5MeV 65MeV 135MeV
13MeV 5MeV 65MeV 135MeV
5MeV 13MeV 65MeV 135MeV
5MeV 13MeV 135MeV 65MeV
5MeV 13MeV 65MeV 135MeV