1 / 16

Basic High Performance Computing

Basic High Performance Computing. Kenton McHenry. XSEDE. Extreme Science and Engineering Discovery Environment http://www.xsede.org Collection of networked supercomputers PSC Blacklight NCSA Forge SDSC Gordon SDSC Trestles NICS Kraken TACC Lonestar TACC Ranger Purdue Steele. XSEDE.

adrina
Download Presentation

Basic High Performance Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Basic High Performance Computing Kenton McHenry

  2. XSEDE • Extreme Science and Engineering Discovery Environment • http://www.xsede.org • Collection of networked supercomputers • PSC Blacklight • NCSA Forge • SDSC Gordon • SDSC Trestles • NICS Kraken • TACC Lonestar • TACC Ranger • Purdue Steele

  3. XSEDE • Extreme Science and Engineering Discovery Environment • http://www.xsede.org • Collection of networked supercomputers • Supported by NSF • Follow up to TeraGrid • NCSA Ember • …

  4. Allocations • Startups • Around 30,000 CPU hours • For experimentation • Can apply any time per year • Only 1 such allocation per user • Research • 1 million+ CPU hours • Research plan • Can apply for only during certain periods in the year • Very competitive • Humanities related work makes up a very small amount of those given out

  5. ECS • Extended Collaborative Support Services • Time from XSEDE support staff • Ask for in allocation request • Must justify

  6. Logging In • Linux • SSH • ember.ncsa.illinois.edu • Head node vs. worker nodes

  7. Space • Local scratch • Temporary space during a programs execution • Cleared as soon as the process finishes • Global scratch • Temporary user space • Untouched files are cleared periodically (e.g. weeks) • Mass store • Long terms storage • Tapes

  8. Executing Code • Naively or Embarrassingly Parallel • Problem allows for a number of independent tasks that can be executed separately from one another • No special steps needed to synchronize steps or merge results • e.g. MPI or Map Reduce

  9. Executing Code • Step 1: Write your code on a non-HPC resource • For the Census project this involved months of research and development • Construct to have only a command line interface • Support flags for: • Setting input data (either folder or database) • Setting output location (either folder or database) • Customizing the execution and/or selected a desired step • We had 3 steps

  10. Executing Code • Step 1: Write your code on a non-HPC resource • Step 2: Organize data • Perhaps subfolders for each job • Move to global scratch space to avoid GridFS bottlenecks

  11. Executing Code • Step 1: Write your code on a non-HPC resource • Step 2: Organize data • Step 3: Create scripts to execute jobs • Scripts • Portable Batch System (PBS) • [Example]

  12. Executing Code • Step 1: Write your code on a non-HPC resource • Step 2: Organize data • Step 3: Create scripts to execute jobs • Step 4: Run scripts

  13. Execute $ qsub00889.pbs This job will be charged to account: abc267950.ember $ for f in *.pbs; do qsub$f; done

  14. Monitor $ qstat Job id            Name             User              Time Use S Queue----------------  ---------------- ----------------  -------- - -----267794.ember      v15              ccguser           75:11:48 R gridchem267795.ember      v16              ccguser           75:09:20 R gridchem267796.ember      v17              ccguser           75:13:01 R gridchem267870.ember      c4-ts1-freq      ccguser           279:03:2 R gridchem267872.ember      c5-ts1-freq      ccguser           351:17:0 R gridchem267873.ember      c5-ts1-ccsd      ccguser           228:50:0 R gridchem267897.ember      c3-ts1-ccsdt     ccguser           267:04:0 R gridchem267912.ember      FSDW103lnpvert   kpatten           2178:07: R normal          267943.ember      jobDP12          haihuliu          1506:40: R normal          267944.ember      PF31             haihuliu          920:44:4 R normal          267945.ember      jobDP8           haihuliu          1351:11: R normal          267946.ember      FLOOArTSre2.com  ccguser           91:32:30 R gridchem267947.ember      FLOOArTSre3.com  ccguser           86:29:35 R gridchem267949.ember      vHLBIHl1O5       ccguser           01:23:03 R normal          267950.ember      S-00889          kooper            00:00:00 R normal 

  15. Results $ qstat-f 267950.ember Job Id: 267950.emberJob_Name = S-00889Job_Owner = kooper@ember.ncsa.illinois.eduresources_used.cpupercent = 396resources_used.cput = 00:02:26resources_used.mem = 4981600kbresources_used.ncpus = 12resources_used.vmem = 62051556kbresources_used.walltime = 00:01:02job_state = R    queue = normal    server = emberAccount_Name = gf7    Checkpoint = nctime = Wed May 30 11:11:33 2012Error_Path = ember.ncsa.illinois.edu:/u/ncsa/kooper/scratch-global/census/1        940/batch1/segmentation/S-00889.e267950exec_host = ember-cmp1/1*6+ember-cmp1/2*6exec_vnode = (ember-cmp1[11]:ncpus=6:mem=32505856kb)+(ember-cmp1[12]:ncpus=        6:mem=27262976kb)

  16. Questions? Image and Spatial Data Analysis Group http://isda.ncsa.illinois.edu

More Related