170 likes | 317 Views
Investigation of short-lived nuclei using RIBs. Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibniz-Laboratorium für Kern- und Teilchenphysik der Ludwig-Maximilians-Universität München und der Technischen Universität München. Cycle of matter: Nucleosynthesis.
E N D
Investigation of short-lived nuclei using RIBs Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibniz-Laboratorium für Kern- und Teilchenphysik der Ludwig-Maximilians-Universität München und der Technischen Universität München
Nuclear chart Example: r-process
CS22892-052 (Sneden et al. 2003) solar r abundance log(X/H)-12 element number r-Process abundance for metal poor stars
Nuclei along the r-process K.L. Kratz Russbach 2006
r-process abundances not well described by current models Pfeiffer et al. Shell quenching or fission or …? G. Martinez Pinedo et al.
V r V r Modifications of shell structure in neutron-rich nuclei • How does the central potential change with neutron excess? • What is the isospin dependence of the spin-orbit interaction? Spin-orbit coupling Valley of stability Neutron-rich nuclei
M. Bender, P.H. Heenen, P.G. Reinhard Rev. Mod. Phys. 75 (2003) 122 Lack of predictive power of mean-field models from RIA Whitepaper
What we can measure in the laboratory? • Masses, Q-values • Half-lives T1/2 • Beta-delayed neutron emission probabilities Pn • Evolution of single-particle structure and collectivity probing of shell structure working towards reliable theoretical models • low-lying dipole strength important for e.g. (g,n)
Production of short-lived radioactive beams Isotope Separation On-Line • Reaction of light projectile (p, d, n) on a heavy target • Spallation • Fission • Fragmentation • Exotic nucleus produced in-flight • as fragment of heavy beam • Fragmentation • Fission • Diffusion out of thick target: • depends on chemistry • Slow process • Fragments fly forward with beam velocity (30-90% c) • Physical separation only • - Fast separation
1.4 GeV MINIBALL REX-ISOLDE From PS Booster
N Gesellschaft für Schwerionenforschung (GSI)in Darmstadt Ion source Target Area Therapy UNILAC ESR Ion source (high Q) FRS Experimental hall 8-20% c (3-20 MeV/nucleon) SIS Max. 90% c (2 GeV/nucleon)
First production of 100Sn Production of 100Sn and T1/2 of rp-process nuclei DE 124Xe beam E= 1 A.GeV TOF DE TUM T. Faestermann et al., EPJA 15 (2002) 185 A. Stolz et al.
Primary Beams • 1012/s; 1.5-2 GeV/u; 238U28+ • Factor 100-1000 over present in intensity Secondary Beams Storage and Cooler Rings • Broad range of radioactive beams • up to 1.5 - 2 GeV/u; • up to factor 10 000 in intensity over present • Antiprotons 3 - 30 GeV • Radioactive beams • e- - A and Antiproton-A collider FAIR: Facility for Antiproton and Ion Research Future Facility SIS 100/300 GSI today SIS 18 UNILAC ESR 100 m HESR Super FRS RESR CR NESR
Decay spectroscopy and T1/2: • - 100Sn and vicinity (GSI, RIKEN) • A~90 Ge,As,Se (ILL Grenoble) • 128Pd and vicinity (GSI) • below 208Pb (GSI) • Coulomb excitation @ REX-ISOLDE • N=40-50 Ni, Cu, Zn • Cd, Xe, Ba around N=82 • Probing evolution of shell structure • knock-out and inelastic excitation: • 55Ti, 73Cu (GSI) • 42Si, 54Ca and vicinity (RIKEN) • transfer reactions at REX-ISOLDE • ~ 32Mg, ~ 68Ni Current experimental program
Reach of mass- and T1/2 measurements at FAIR Source: ILIMA collaboration Other future facilities: RIBF @ RIKEN HIE-ISOLDE @ CERN SPIRAL2 @ GANIL ISF @ MSU
Summary • Properties of nuclei involved in nucleosynthesis are often not well known experimentally • Theoretical models and extrapolations vary significantly lack of reliable predictions • Current and future radioactive beam facilities allow for • Investigation of key nuclei to distinguish between theoretical models towards a unified nuclear theory • Direct measurement of properties of relevant nuclei • Local groups (LS Krücken, LS Habs) involved in experiments and methodical developments • New Professorship in Nuclear Astrophysics will strengthen local effort