1 / 10

Panel Data Methods

Panel Data Methods. y it = b 0 + b 1 x it1 + . . . b k x itk + u it. A True Panel vs. A Pooled Cross Section. Often loosely use the term panel data to refer to any data set that has both a cross-sectional dimension and a time-series dimension

afolsom
Download Presentation

Panel Data Methods

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Panel Data Methods yit = b0 + b1xit1 + . . . bkxitk + uit Economics 20 - Prof. Anderson

  2. A True Panel vs. A Pooled Cross Section • Often loosely use the term panel data to refer to any data set that has both a cross-sectional dimension and a time-series dimension • More precisely it’s only data following the same cross-section units over time • Otherwise it’s a pooled cross-section Economics 20 - Prof. Anderson

  3. Pooled Cross Sections • We may want to pool cross sections just to get bigger sample sizes • We may want to pool cross sections to investigate the effect of time • We may want to pool cross sections to investigate whether relationships have changed over time Economics 20 - Prof. Anderson

  4. Difference-in-Differences • Say random assignment to treatment and control groups, like in a medical experiment • One can then simply compare the change in outcomes across the treatment and control groups to estimate the treatment effect • For time 1,2, groups A, B (y2,B – y2,A) - (y1,B – y1,A), or equivalently (y2,B – y1,B) - (y2,A – y1,A), is the difference-in-differences Economics 20 - Prof. Anderson

  5. Difference-in-Differences (cont) • A regression framework using time and treatment dummy variables can calculate this difference-in-difference as well • Consider the model: yit = b0 + b1treatmentit + b2afterit + b3treatmentit*afterit + uit • The estimated b3 will be the difference-in-differences in the group means Economics 20 - Prof. Anderson

  6. Difference-in-Differences (cont) • When don’t truly have random assignment, the regression form becomes very useful • Additional x’s can be added to the regression to control for differences across the treatment and control groups • Sometimes referred to as a “natural experiment” especially when a policy change is being analyzed Economics 20 - Prof. Anderson

  7. Two-Period Panel Data • It’s possible to use a panel just like pooled cross-sections, but can do more than that • Panel data can be used to address some kinds of omitted variable bias • If can think of the omitted variables as being fixed over time, then can model as having a composite error Economics 20 - Prof. Anderson

  8. Unobserved Fixed Effects • Suppose the population model is yit = b0 + d0d2t + b1xit1 +…+ bkxitk + ai + uit • Here we have added a time-constant component to the error, uit = ai + uit • If aiis correlated with the x’s, OLS will be biased, since we aiis part of the error term • With panel data, we can difference-out the unobserved fixed effect Economics 20 - Prof. Anderson

  9. First-differences • We can subtract one period from the other, to obtain Dyi = d0 + b1Dxi1 +…+ bkDxik + Dui • This model has no correlation between the x’s and the error term, so no bias • Need to be careful about organization of the data to be sure compute correct change Economics 20 - Prof. Anderson

  10. Differencing w/ Multiple Periods • Can extend this method to more periods • Simply difference adjacent periods • So if 3 periods, then subtract period 1 from period 2, period 2 from period 3 and have 2 observations per individual • Simply estimate by OLS, assuming the Duit are uncorrelated over time Economics 20 - Prof. Anderson

More Related