1 / 6

MATEMÁTICA

AGRONEGÓCIO - TURMA 2º A. MATEMÁTICA. UNIDADE 5 Conteúdo: Transformações Trigonométricas Duração: 1 0 40’ 22/10/13. Matemática – Sistemas Lineares André Luiz. Exemplos.

aglaia
Download Presentation

MATEMÁTICA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AGRONEGÓCIO - TURMA 2º A MATEMÁTICA UNIDADE 5 Conteúdo: Transformações Trigonométricas Duração: 10 40’ 22/10/13 Matemática – Sistemas Lineares André Luiz

  2. Exemplos 01- Calcule o cosx na equação 2cos2x+cosx-1=0 2cos2x+cosx-1=0 ∆=1-4.4.(-3) 2(cos²x-sen²x)+cosx-1=0 ∆=49 2(cos²x-(1-cos²x))+cosx-1=0 Cosx=(-1±7)/2.4 2(2cos²x-1)+cosx-1=0 Cosx’=(-1-7)/8 Cosx’=-1 4cos²x - 2 + cosx-1=0 Cosx”=(-1+7)/8 4cos²x+cosx-3=0 Cosx”=3/4

  3. Exemplos 2- Sabendo que tgx + cotgx = 3, calcule sen 2x tgx + cotgx = 3 senx * cosx =1/3 senx + cosx =3 cosxsenx sen²x + cos²x sen2x= 2senx.cosx =3 senx . cosx sen2x= 2(1/3) 1 =3 sen2x= 2/3 senx . cosx

  4. Exemplos 3 Encontrar os ângulos x e y pertencentes ao intervalo [0,2π] no sistema / / Senx=2-1 Sen(x+y)+sen(x-y)=2 Senx + cosy=2 Senx=1 • x= π/2 senx.cosy+seny.cosx + senx.cosy - seny.cosx=2 senx+cosy =2 senx.cosy =1 (2-cosy).cosy=1 2senx.cosy =2 senx+cosy =2 Senx=2-cosy senx+cosy =2 • y =0 ou y=2π 2cosy - cos²y = 1 cosy =1

  5. Exemplos 4) Calcule tgx, sabendo que cos²x + 3 senx.cosx – sen²x=1 2tg²x – 3tgx=0 Tgx = senx Tgx(2tgx – 3)=0 cosx Tgx=3/2 tgx = 0 ou cos²x + 3 senx.cosx – sen²x= 1 cos²x + 3 senx.cosx – sen²x = 1 Cos²x Cos²x Cos²x Cos²x 1 + 3 tgx - tg²x = sec²x 1 + 3 tgx - tg²x = 1+ tg²x

  6. Exercícios 1) Sendo senx=5/13 e Cosx=12/13 com x sendo um arco do 1º quadrante, determine o valor de tg2x. 2)

More Related