310 likes | 441 Views
Equipment Costing CAPEX. Sieder-Chapter 16 Review CH EN 5253 Terry A. Ring. Design I Coverage. Time Value of Money Capital Costs Operating Costs Profitability Analysis Reading Materials. Cost Estimate Methods. Order of Magnitude Estimate Method of Hill Marshall Swift for I/Ibase
E N D
Equipment CostingCAPEX Sieder-Chapter 16 Review CH EN 5253 Terry A. Ring
Design I Coverage • Time Value of Money • Capital Costs • Operating Costs • Profitability Analysis • Reading Materials
Cost Estimate Methods • Order of Magnitude Estimate • Method of Hill • Marshall Swift for I/Ibase • Six Tenths Rule for Production Capacity • CTCI-2 (I)=CTCI-1 (Ibase)*(I/Ibase)* (Capacity2/Capacity1)0.6 • Study Estimate (±35%) • Method of Lang • CTCI=1.05*fL-TCI ∑ (Ii/Ibase-i) Cp-i • Lang factors for different types of Plants • Solids -3.10, Solids&Fluids 3.62, Fluids 4.73 • Sum over all major equipment • Preliminary Estimate (±20%) – use this method in CHEN 5253 • Method of Guthrie • Bare module cost, CBM=Cp-base(I/Ibase)[FBM+(FdFpFm-1)] • d= design factor, p = pressure factor, m =materials factor • Quote Estimate
6/10th scale up/down Factor • Used for scaling the total capital cost for a chemical plant of a different size • Cost2/Cost1 = (Capacity2/Capacity1)0.6 • 0.6 - Accounts for economy-of-scale
Accounting for Inflation • Cost to purchase = Base Cost*(I/Ibase) • Base Cost, CB, = Historical price at Io • I is a Cost Index at present time • Chemical Engineering, CE, Plant Cost Index • Ibase=567 (<2013>) for your equations in Sieder’s 4th Ed. • Marshall and Swift (MS) Equipment Cost Index • Nelson-Farrar (NF) Refinery Construction Cost Index • Engineering News-Record (ENR) Construction Cost Index • Cp(I) = Cp(Ibase)*(I/Ibase) • Cp(Ibase)=FT*Fm*Cbase(Ibase) (Hill Method) FT= Type factor Fm= Materials factor
Cost Estimate Methods • Order of Magnitude Estimate • Method of Hill • Marshall Swift for I/Ibase • Six Tenths Rule for Production Capacity • CTCI-2 (I)=CTCI-1 (Ibase)*(I/Ibase)* (Capacity2/Capacity1)0.6 • Study Estimate (±35%) • Method of Lang • CTCI=1.05*fL-TCI ∑ (Ii/Ibase-i) Cp-i • Lang factors for different types of Plants • Solids -3.10, Solids&Fluids 3.62, Fluids 4.73 • Sum over all major equipment • Preliminary Estimate (±20%) – use this method in CHEN 5253 • Method of Guthrie • CTCI=(Ii/Ibase-i) ∑ Cp-i • Bare module cost, Cp-BM=Cp-base[FBM+(FdFpFm-1)] • d= design factor, p = pressure factor, m =materials factor • Quote Estimate
Purchase Costs for Equipment • Size Factor, S, depends on type of equipment • Cp(Ibase)= A + b* (S)n • Ibase= 567 (2013 average) • Cp(Ibase)=exp(Ao+A1[lnS]+A2[lnS]2+…) • Ibase = 567 (2013 average)
Materials Costs The materials factor is different for different pieces of equipment!
Compressors • Compressor types (Ibase=394, equations from 3rd Edition of book) • Centrifugal, CB=exp{7.2223+0.80[ln(PC)]} • Reciprocating, CB=exp{7.6084+0.80[ln(PC)]} • Screw, CB=exp{7.7661+0.7243[ln(PC)]} • Size factor is the power consumed, PC=PB/ηC • CP=FDriveFMatCB • FDrive =1 (electric motor), 1.15 (steam), 1.25 (gas turbine) • FMat = 1.0 Carbon steel, 2.5 SS, 5.0 Nickel Alloy • CBM=FBM*∑CP • FBM = 2.15 Fully Installed Cost
Heat Exchangers • Types of Heat exchangers (Ibase=394, 3rd Edition of book) • Floating Head, CB=exp{11.667-0.8709[ln(A)]+0.09005[ln(A)]2} • Fixed Head, CB=exp{11.0545-0.9228[ln(A)]+0.09861[ln(A)]2} • U-tube, CB=exp{11.147-0.9186[ln(A)]+0.09790[ln(A)]2} • Kettle, CB=exp{11.967-0.8709[ln(A)]+0.09005[ln(A)]2} • Thermosiphon, CB= • Double pipe, CB=exp{7.1248-0.16[ln(A)]} • Size Factor is HX area, A, for heat transfer • CP=FpFMatFLCB • Pressure Factor, Fp= 0.9803+0.018(P(psig)/100)+0.0017(P(psig)/100)2 • Not for double pipe • Materials Factor, Fmat=a+(A/100)b, a & b from Table 16.25 • a≥1.0 note error in Table • Tube Length Factor FL= 1.25 for 8 ft, 1.0 for 20 ft. on a sliding scale • CBM = FBM*CP, FBM=3.17 (S&T), 1.80 (DP), 2.17 (Fin/Fan)
Fired Heaters • Size Factor is the heat duty, Q • CB=exp{0.08505+0.766[ln(Q)]} (Ibase=394) • CP=FPFMatCB • FP=0.986-0.0035(P(psig)\500)+0.0175(P/500)2 • Fmat=1.4 Cr-Mo alloy steel, 1.7 for stainless steel • CBM = FBM*CP, FBM=2.19
Pressure Vessels • Storage Tanks • Distillation Towers • Tray • Packed • Absorber Towers • Stripping Towers
Pressure Vessels • Sizing Factor is the weight of steel, W • Horizontal Vessels, 1,000<W<920,00 lb CB=exp{8.717-0.2330[ln(W)]+0.4333[ln(W)]2} (Ibase=394, 3rd Edition of Book) • Vertical Vessels, 4,200<W<1,000,00 lb CB=exp{6.775-0.18255[ln(W)]+0.02297[ln(W)]2} (Ibase=394) • Add Platform Costs, • Horizontal, 3<Di<12 ft • CPL=1580(Di)0.20294 (Ibase=394) • Vertical, 3<Di<21 ft • CPL=258.1(Di)0.7396(L)0.70684 (Ibase=394) • Weight, W=π(Di+ts)(L+0.8Di)tsρs • C=FMCB+CPL • FM= materials factor see Table 16.26 • Installation, etc, FBM=4.16 (V), 3.05 (H) • CBM=FBM*∑CP
Hoop Stress Calc for thickness, ts • Design Pressure is function of operating pressure, Po • For Po> 1,000psig use Pd=1.1Po • For Po< 1,000psig but not for vacuum Pd=exp{0.60608+0.91615[ln(Po)]+0.0015655[ln(Po)]2} • Thickness (Hoop Stress Calculation) • ts= PdDi/(2SE-1.2 Pd) • S = max allowable stress for steel is f(T) see Book p.466. • E = weld efficiency (fraction) • Ts is Minimum wall thickness for given diameters • May add extra thickness for wind stresses, corrosion allowance • Different calculation for vacuum vessels! • Also account for leakage when vacuum vessel is used
Distillation Towers • Pressure vessel with plates or packing and additional nozzels and manholes • Tray Cost CT=NTFNTFTTFTMCBT • NT= no. trays • FNT= 1 for NT>20 otherwise FNT=2.25/(1.0414NT) • FTT = tray type, 1.0 sieve, 1.87 bubble cap • FTM= Materials, f(D) • Carbon Steel FTM=1.0 • 316 SS FTM=1.401+0.0788 Di • Installation, etc, FBM=4.16 • CT_BM=FBM*∑CT
Packed Distillation Column • Pressure vessel with platforms plus packing • Platforms see Eq. (16.58) • CPL=341 (Di)0.63316(L)0.80161 • Packing Cost basis is volume of packing, VP • C=VpCPK+CDR • CPK= is installed cost per unit volume • Distributors cost, CDR
Absorbers/Strippers • Pressure Vessel • plus platforms • plus packing and distributors • Separate costs for blowers • Separate cost for pumps • Separate costs for motors • On blowers • On mixers • On pumps
Plant Location Factor FISF From T&S Book
Conclusions • 0.6th rule • Factored Estimate of Major Equipment • Installation Factor • Peripheral equipment, foundations, piping, etc • Biggest Mistakes • Forget Utility Plants • No Off Sites • No Electrical Substation • No Natural Gas Connection • Neglecting Major Equipment