170 likes | 266 Views
Supplementary material Dimer-based model for heptaspanning membrane receptors. Rafael Franco, Vicent Casadó, Josefa Mallol, Sergi Ferré, Kjell Fuxe, Antonio Cortés, Francisco Ciruela, Carmen Lluis and Enric I. Canela
E N D
Supplementary materialDimer-based model for heptaspanning membrane receptors Rafael Franco, Vicent Casadó, Josefa Mallol, Sergi Ferré, Kjell Fuxe, Antonio Cortés, Francisco Ciruela, Carmen Lluis and Enric I. Canela Corresponding author: Canela, E.I. (ecanela@ub.edu).Department Bioquímica i Biologia Molecular, Universitat de Barcelona, A. Diagonal, 645. 08028 Barcelona, Spain
Scheme of the model DIMER OPERATING UNIT Inactive Vacant K mK A+A+(RR) A+A(RR) A(RR)A a L L qa L a K mq K A+A+(RR)* A+A(RR)* A(RR)*A Constitutive Occupied Active
Constants List of the equilibrium constants for the two-state dimer model aIn this symmetric dimer model [A(RR)] refers to the concentration of dimer with A bound, irrespective of whether A is bound to one site or the other.
Ligand binding I. Functions The ligand-binding function The saturation function is a 2:2 function
Ligand binding II. Cooperativity analysis Reference saturation function Saturation function It corresponds to a theoretical non-cooperative binding of A to a dimer K is the average association constant
Ligand binding III. Cooperativity analysis If Positive cooperativity Negative cooperativity If Non-cooperativity. Occurs when If
Ligand binding IV. Fitting data to the model Rearranging and defining p1 and p2 where being . • p2 gives an idea of the affinity • positive cooperativity occurs when p1 < 2·[A]50 • negative cooperativity occurs when p1 > 2·[A]50 • p1 = 2·[A]50 gives non-cooperativity
Signalling analysis. Functional activity (at zero time) The function Functional activity (at zero time) at ligand-saturating concentration is proportional to (a– 1) Constitutive activity
del Castillo and Katz model Inactive Active K L A+R AR AR* Vacant Occupied del Castillo J. and Katz B. (1957) A comparison of acetylcholine and stable depolarizing agents. Proc. R. Soc. Lond. B Biol. Sci. 146, 362368
Ternary complex model Constitutive Vacant M A+G+R A+GR* Inactive Active K a K aM AGR AGR* Occupied De Lean A. et al. (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled b-adrenergic receptor. J. Biol. Chem. 255, 71087117
Extended ternary complex model Vacant Constitutive L mM A+G+R A+G+R* A+R*G a K K qa K a L mq M G+AR G+AR* AR*G Occupied Active Inactive Samama P. et al. (1993) A mutation-induced activated state of the b2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 46254636
Cubic ternary complex model abd L ARG AR*G Weiss J.M. et al. (1996) The cubic ternary complex receptor occupancy model I. Model description. J. Theor. Biol. 178, 151–167 Weiss J.M. et al. (1996) The cubic ternary complex receptor occupancy model II. Understanding apparent affinity. J. Theor. Biol. 178, 169–182 Weiss J.M. et al. (1996) The cubic ternary complex receptor occupancy model III. Resurrecting efficacy. J. Theor. Biol. 181, 381–397 gM bgd M gK agdK a L AR+G AR*+G bL A+RG A+R*G aK K M bM L A+R+G A+R*+G Vacant Occupied Active Inactive Constitutive
Ternary complex model of allosteric modulation Constitutive Vacant J A+B+R A+RB K a K Inactive Active a J AR+B ARB Occupied Tuček S. and Proška J. (1995) Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol. Sci. 16, 205–211
The allosteric two-state model abd L ARB AR*B gM Vacant bgd M gK agdK Occupied a L AR+B AR*+B Inactive bL A+RB A+R*B Active aK K M bM Constitutive L A+R+B A+R*+B Hall D.A. (2000) Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 14121423
Two independent sites model Vacant K1 A+R AR Occupied Inactive K2 A+R* AR* Active Constitutive
The cluster-arranged cooperative model K1 A+R AR K2 K4 K3 A+R* AR* Y is the cooperativity factor Franco R. et al. (1996) The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to A1 adenosine receptors. Biochemistry 35, 30073015