1 / 36

2.0 Statics of Particles

2.0 Statics of Particles. Forces on a Particle. Line of Action. magnitude. Point of Application. 50 N. A. 30 o. direction. Since the vector has a well defined point of application, it is a fixed vector, therefore can not be moved without modifications. Properties of Vector Addition.

ajaxe
Download Presentation

2.0 Statics of Particles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2.0 Statics of Particles Dr. Engin Aktaş

  2. Forces on a Particle Line of Action magnitude Point of Application 50 N A 30o direction Since the vector has a well defined point of application, it is a fixed vector, therefore can not be moved without modifications Dr. Engin Aktaş

  3. Properties of Vector Addition Commutative P+Q=Q+P Q P P A P+Q A Q Q+P P A Q Associative Q Q P P S S Q+S P+Q A A P+Q+S P+Q+S P+Q+S=(P+Q)+S=P+(Q+S) Dr. Engin Aktaş

  4. Resultant of several concurrent forces P Using polygon rule P A Q Q A S S P+Q+S Dr. Engin Aktaş

  5. Resolution of a force into components Q Q F F A A P P F Q A P Dr. Engin Aktaş

  6. Q R a P A Example (Beer & Johnston) Q=60 N The two forces P and Q act on a bolt A. Determine their resultant. 25o P=40 N A 20o 180-25=155o 25o B 20o R2=P2+Q2-2PQcosB Law of cosines R=97.73 N R2=(40N)2+(60N)2-2(40N)(60N)cos1550 Law of sines Dr. Engin Aktaş

  7. Example (cntd.) Law of sines A=15.04o a=20o+A=35.04o a=35.0o The answer is R=97.7 kN Dr. Engin Aktaş

  8. A 1 B 30o 45o 2 C Example (Beer and Johnston) A barge is pulled by two tugboats. If the resultant of the forces exerted by tugboats is a 25 kN force directed along the axis of barge, determine the tension in each of the ropes. Using law of sines R=25 kN 30o 45o 105o T2 T1 Dr. Engin Aktaş

  9. Rectangular Components y F Fy q x Fx Dr. Engin Aktaş

  10. y Fy F q Fx x Dr. Engin Aktaş

  11. Unit Vectors y F Magnitude=1 Fy=Fyj j x Fx=Fxi i Dr. Engin Aktaş

  12. Example (Beer and Johnston) F=(3.5 kN)i+(7.5kN)j Determine the magnitude of the force and angle q. q A y Fy=7.5 kN F q x A Fx=3.5 kN Dr. Engin Aktaş

  13. F1 sin 30o F2 cos 20o F1 cos 30o F4 cos 15o -(F2sin20o) -(F4sin 15o) Magnitude, N x Component, N y Component, N Forces F1 150 +129.9 +75.0 -F3 -27.4 +75.2 F2 80 -110.0 0 110 F3 -25.9 +96.6 F4 100 Addition of Forces by Summing x and y components y 20o F2=80 N Determine the resultant of the forces on the bolt F1=150 N 30o A x 15o F4=100 N F3=110 N Ry=+14.3 Rx=199.1 Dr. Engin Aktaş

  14. Example(cntd) R=Rxi+Ryj R=(199.1N)i+(14.30N)j R Ry=14.30 N a Rx=199.1 N Dr. Engin Aktaş

  15. 30o y 30o x Equilibrium of a Particle When the resultant of all the forces acting on a particle is zero, the particle is in equilibrium. F1=300 N F4=400 N F2=173.2 N F4=400 N F1=300 N A F3=200 N F2=173.2 N F3=200 N R=SF=0 (SFx)i+ (SFy)j=0 SFx=0 SFy=0 SFx=300 N -(200 N) sin30o-(400 N) sin 30o=300 N -100 N -200 N = 0 SFy=-173.2 N -(200 N) cos30o+ (400 N) cos 30o=-173.2 N -173.2 N +346.4 N = 0 Dr. Engin Aktaş

  16. B C A 50o 30o Space Diagram TAB TAC 50o 30o 736 N Free-Body Diagram A sketch showing the physical conditions of the problem is known as space diagram. Choose a significant particle and draw a separate diagram showing that particle and forces on it. This is the Free-Body diagram. Using law of sines TAB 40o 736 N 80o 60o TAB=647 N TAC Free-Body Diagram TAC=480 N Dr. Engin Aktaş

  17. Analytical Solution • Two unknowns TAB and TAC • Equilibrium Equations SFx=0 and SFy=0 The system of equations then Solvingthe above system (2 unknowns 2 equations) TAB=647 N TAC=480 N Dr. Engin Aktaş

  18. Sumary of Solution techniques • equilibrium under three forces may use force trianglerule • equilibrium under more than three forces may use force polygon rule • If analytical solution is desired may use equations of equilibrium Dr. Engin Aktaş

  19. B C 20o 60o A Flow Example(Beer and Johnston) As a part of the design of a new sailboat, it is desired to determine the drag force which may be expected at a given speed. To do so, a model of the proposed hull is placed in a test channel and three cables are used to keep its bow on the centerline of the channel. Dynamometer reading indicate that for a given speed, the tension is 200 N in cable AB and 300 N in cable AE. Determine the drag force exerted on the hull and the tension in cable AC. E Equilibrium condition Start with drawing Free-Body Diagram Resultant of the all forces should be zero R=TAB+TAC+TAE+FD=0 20o TAC Let’s write all the forces in x and y components TAB=200 N 60o TAB=-(200 N) sin 60o i+(200 N) cos 60oj FD TAB=-173.2 i+100 j TAC= (TAC) sin 20o i+(TAC) cos 20oj Unknowns; FD, TAC TAC= 0.342(TAC) i+0.9397(TAC) j TAE=-(300 N) j TAE=300 N FD=FDi Dr. Engin Aktaş

  20. Example(cntd.) R=TAB+TAC+TAE+FD=0 R=(-173.2 N)i + 100 N j + 0.342(TAC) i + 0.9397 (TAC) j + (-300 N) j + FDi =0 R={-173.2 + 0.342(TAC) + FD}i + {100 + 0.9397 (TAC) + (-300 N)}j = 0 -173.2 N + 0.342(TAC) + FD= 0 SFx=0 100 + 0.9397 (TAC) + (-300 N)= 0 SFy=0 TAC=213 N FD=100 N Dr. Engin Aktaş

  21. y z V x Forces in Space j k Vzk qy Vyj qz qx Vxi i V=Vxi+Vyj+Vzk Vx=V cos qx Vy=V cosqy Vz=Vcosqz Dr. Engin Aktaş

  22. Direction cosines n= cos qz m= cos qy l = cos qx Vz=nV Vy=mV Vx=l V V 2=Vx2+Vy2+Vz2 l 2 + m 2 + n 2=1 Dr. Engin Aktaş

  23. y z x B(xB, yB, zB) V n A(xA, yA, zA) (xB-xA) (yB-yA) i V= + j (zB-zA) + k Unit vector along AB Dr. Engin Aktaş

  24. Rectangular Coordinates in Space y y B B A Fy qy Fy F Fx x O x O f D Fh f Fz Fh C E C Fy=F cosqy Fx = Fh cosf = F sinqy cosf z z Fh=F sinqy Fz = Fh sinf = F sinqy sinf F 2 = Fy2 + Fh2 Fh2 = Fx2 + Fz2 Dr. Engin Aktaş

  25. Problems Dr. Engin Aktaş

  26. Problem 1-(Meriam and Kraige) y F=1800 N 4 The 1800 N force F is applied at the end of the I-beam. Express F as a vector using the unit vectors i and j. A 3 x First let’s find the xand ycomponents of the force F. z Fx= -1800 N 3/5 = -1080 N Fy= -1800 N 4/5 = -1440 N F = Fx i+ Fy j = -1080 i -1440 j N Dr. Engin Aktaş

  27. L C D Air flow Problem 2-(Meriam and Kraige) The ratio of the lift force L to the drag force D for the simple airfoil is L/D = 10. If the lift force on a short section of the airfoil is 50 N, compute the magnitude of the resultant force R and the angle q which it makes with the horizontal. L= 50 N tan q = 50/5 q C q = tan-110 =84.3o D=5 N F = (502+52)0.50 = 50.2 N Dr. Engin Aktaş

  28. Fx A 45o 66.7o 113.3o 45o 1040 N Fa 21.7o Problem 3-(Meriam and Kraige) y The gusset plate is subjected to the two forces shown. Replace them by two equivalent force, Fx in the x-direction and Fa in the a direction. Determine the magnitudes of Fx and Fa. A x 10o From the law of cosines 800 N 900 N R2=8002+9002-2(800)(900) cos75 a 45o 25o R=1040 N A From the law of sines 800 N 10o 10o a 65o R 25o 900 N Dr. Engin Aktaş

  29. A 40m B 20m C 50m 40m Problem 4-(Meriam and Kraige) The guy cables AB and AC are attached to the top of the transmission tower. The tension in cable AC is 8 kN. Determine the required tension T in cable AB such that the net effect of the two cable tensions is a downward force at point A. Determine the magnitude R of this downward force This time let’s use another approach. Since the resultant force is downward the sum of horizontal components of the two forces should add up to zero. 8 kN R The magnitude of R Dr. Engin Aktaş

  30. Problem 5-(Beer and Johnston) 500 mm 1375 mm Two cables are tied together at C and loaded as shown. Determine the tension in AC and BC. A B 1200 mm Let’s draw the Free Body Diagram (FBD) at C C y 1600 kg TBC TAC x C W=1600*9.81=15700N Writing Equilibrium Equations SFx=0 SFy=0 TAC=12470 N TCB=6370 N Dr. Engin Aktaş

  31. C 13.5 m 4 m D B A 5.5 m 8 m y Problem 6-(Beer and Johnston) A precast-concrete wall section is temporarily held by the cables shown. Knowing that tension is 4200 N in cable AB and 6000 N in cable AC, determine the magnitude and direction of the resultant of the forces exerted by cables AB and AC on stake A. x Coordinates of points A, B and C A (8, -4, -5.5) B (0, 0, 0) C (0, 0, -13.5) AB=(0-8) i + (0-(-4)) j + (0-(-5.5)) k = -8 i + 4 j + 5.5 k z AC=(0-8) i + (0-(-4)) j + (-13.5-(-5.5)) k = -8 i + 4 j - 8 k Dr. Engin Aktaş

  32. C 13.5 m 4 m D B A 5.5 m 8 m y x z y Problem 6-(Beer and Johnston) A precast-concrete wall section is temporarily held by the cables shown. Knowing that tension is 4200 N in cable AB and 6000 N in cable AC, determine the magnitude and direction of the resultant of the forces exerted by cables AB and AC on stake A. x z R = FAB + FAC R =(-3200-4002) i +(1600+1998) j + (2201-4002) k = -7200 i + 3600 j - 1800 k R = 8250 N Direction cosines n = 0.218 l = 0.873 m = 0.436 Dr. Engin Aktaş

  33. y C 700 mm 450 mm O D 600 mm x B 650 mm z 1125 mm A Problem 7-(Beer and Johnston) Let’s draw FBD first FAC FAD FAB W Unknowns : FAD, FAC and W Coordinates of points A, B, C and D B (700, 0, 0) C (0, 0, -600) D (-650, 0,450) A (0, -1125, 0) A crate is supported by three cables as shown. Determine the weight W of the crate knowing that the tension in cable AB is 4620 N. AB=((700-0)i+(0-(-1125))j+0k=700i+1125j+0k AB=(7002+11252)0.5=1325 nAB=(700i+1125j+0k)/1325=0.5283i+0.8491j FAB=4620(0.5283i+0.8491j) N Dr. Engin Aktaş

  34. y C 700 mm 450 mm O D 600 mm x B 650 mm z 1125 mm A Problem 7-(Beer and Johnston) Coordinates of points A, B, C and D B (700, 0, 0) C (0, 0, -600) D (-650, 0,450) A (0, -1125, 0) AC=(0i+(0-(-1125))j+(-600-0)k=0i+1125j-600k AC=(6002+11252)0.5=1275 nAC=(0i+1125j-600k)/1275=0.8824j-0.4706k FAC=FAC(0.8824j-0.4706k) N AD=((-650-0)i+(0-(-1125))j+(450-0)k=-650i+1125j+450k AD=(6502+11252 +4502)0.5=1375 nAD=(-650i+1125j+450k)/1375= -0.4727i+0.8182j+0.3273k FAD=FAD(-0.4727i+0.8182j+0.3273k) N W=-W j Dr. Engin Aktaş

  35. y C 700 mm 450 mm O D 600 mm x B 650 mm z 1125 mm A Problem 7-(Beer and Johnston) FAB+FAC+FAD+W=0 4620(0.5283i+0.8491j) +FAC(0.8824j-0.4706k)+FAD(-0.4727i+0.8182j+0.3273k)-W j=0 2441-0.4727FAD=0 FAD= 5160 N FAC= 3590 N -0.4706 FAC+0.3273*5160=0 W= 11320 N 3922+3170+4225-W = 0 Dr. Engin Aktaş

  36. y Problem 8-(Beer and Johnston) D 600 mm C A 200 mm x 200 mm B 200 mm 400 mm z A 16 kg triangular plate is supported by three wires as shown. Determine the tension in each wire . Dr. Engin Aktaş

More Related