1 / 25

Theoretical Astrophysics II

Theoretical Astrophysics II. I. Magnetohydrodynamics ( for astrophysics ). Markus Roth Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Kiepenheuer-Institut für Sonnenphysik. Introduction. Reference: „Essential magnetohydrodynamics for astrophysics “ by H. Spruit.

ajay
Download Presentation

Theoretical Astrophysics II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TheoreticalAstrophysics II I. Magnetohydrodynamics(forastrophysics) Markus Roth Fakultät für Mathematik und PhysikAlbert-Ludwigs-Universität Freiburg Kiepenheuer-Institut für Sonnenphysik

  2. Introduction Reference: „Essential magnetohydrodynamicsforastrophysics“ by H. Spruit • Followingfirstpartofthelectureisintendedas an introductiontomagnetohydrodynamics in astrophysics. • Pre-Conditions: • Conceptsof fluid dynamics • LagrangianandEuleriandescriptionsof fluid flow • Vectorcalculus • Elementaryspecialrelativity

  3. Introduction • Not muchknowledge on electromagnetictheoryrequired • MHD iscloser in spiritto fluid mechanicsthantoelectromagnetism

  4. History • Basic astrophysicalapplicationsof MHD weredeveloped 1950s – 1980s • Powerful toolsfornumericalsimulationsofthe MHD equationsallownowapplicationtomorerealisticastrophysicalproblems.

  5. 1. Essentials • MHD describeselectricallyconductingfluids in which a magneticfieldispresent. Astrophys. def. (Fluid): generictermfor a gas, liquid orplasma

  6. 1.1 Equations • 1.1.1 The MHD Approximation • 1.1.2 Ideal MHD • 1.1.3 The InductionEquation • 1.1.4 Geometricalmeaningofr¢ B =0 • 1.1.5 ElectricCurrent • 1.1.6 Charge Density • 1.1.7 Lorentz Force, Equationof Motion • 1.1.8 The Status ofCurrents in MHD • 1.1.9 Consistencyofthe MHD Approximation

  7. 1.1 Equations • 1.1.4 Geometricalmeaningofr¢ B =0

  8. 1.2 The motionoffieldlines

  9. 1.2 The motionoffieldlines • 1.2.2 Field Amplificationby Fluid Flows

  10. 1.2 The motionoffieldlines • 1.2.2 Field Amplificationby Fluid Flows

  11. 1.2 The motionoffieldlines • 1.2.2 Field Amplificationby Fluid Flows

  12. 1.2 The motionoffieldlines • 1.2.2 Field Amplificationby Fluid Flows

  13. 1.3 Magneticforceandmagnetic stress • 1.3.2 Magnetic stress tensor Example: Accretiondisk Example: Solar Prominence g

  14. 1.3 Magneticforceandmagnetic stress • 1.3.3 Properties ofthemagnetic stress. Pressureandtension Fright, x

  15. 1.3 Magneticforceandmagnetic stress • 1.3.4 Boundariesbetweenregionsof different fieldstrength

  16. 1.3.5 MagneticBoyancy

  17. 1.4.1 Potential Fields

  18. 1.4.1 Potential Fields Potential fieldreconstruction Top: Observation ofcorona Botton: Potential fieldreconstructionofcorona (courtesy T. Wiegelmann, MPS)

  19. 1.4.2 Force-Free Fields

  20. Flares Wenn unterschiedliche Magnetfelder aufeinandertreffen: “Kurzschluss”

  21. Flares Bastille-Flare

  22. Coronal Mass Ejections (CMEs) • Bastille flare: Juli 14, 2000 10:24 am • energetic particles reach Earth: 10:38 am • CME mass: several billion tons • speed: 1520 km/s • flight time: 28 hours Effects on Earth: • several satellites lose orientation; ASCA satellite (Japan) permanently • radio communication and GPS affected • some air planes for 80 min without radio contact • power blackouts in USA, UK, SF • aurorae „light bulb“ CME (not Bastille)

  23. Earth: magnetosphereandaurorae Earth isprotectedbyitsmagneticfield. Ifitisperturbedby solar eruptions, chargedparticlescanpenetratenearthepoles down totheupperairlayers aurorae.

  24. The Solar Dynamo Flows inside the Sun are important for solar dynamo action: A possible solar/stellar dynamo • At cycle minimum:a dipolar field threads through a shallow layer below the surface. • Differential rotation shears out this dipolar field to produce a strong toroidal field (first at the mid-latitudes then progressively lower latitudes). • Around solar maximum:Buoyant fields erupt through the photosphere forming, e.g. sunspots and active regions • The meridional flow away from the mid-latitudes gives reconnection at the poles and equator. The Sun’s internal rotation and meridional flow need to be measured (Babcock, 1961; and later developments)

  25. The Solar Dynamo (Courtesy R. Arlt, AIP)

More Related