640 likes | 793 Views
V. Cirigliano Caltech C. Lee INT S. Tulin Caltech S. Profumo Caltech. M.J. Ramsey-Musolf. Electric Dipole Moments and the Origin of Baryonic Matter. PRD 71: 075010 (2005) Caltech MAP-312 (in prep). Cosmic Energy Budget. Dark Matter. Dark Energy. Baryons.
E N D
V. Cirigliano Caltech C. Lee INT S. Tulin Caltech S. Profumo Caltech M.J. Ramsey-Musolf Electric Dipole Moments and the Origin of Baryonic Matter PRD 71: 075010 (2005) Caltech MAP-312 (in prep)
Cosmic Energy Budget Dark Matter Dark Energy Baryons Explaining non-zero rB requires CP-violation beyond that of the Standard Model (assuming inflation set rB=0) What is the origin of baryonic matter ?
Cosmic Energy Budget Dark Matter Searches for permanent electric dipole moments (EDMs) of the neutron, electron, and neutral atoms probe new CP-violation Dark Energy T-odd , CP-odd by CPT theorem Baryons What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ? What is the origin of baryonic matter ?
Equally difficult but less studied This talk Baryogenesis and EDMs: Theoretical Tasks • Attaining reliable computations that relate particle physics models of new CP-violation to EDMs of complex systems (neutron, atoms, nuclei) • Attaining reliable computations of the baryon asymmetry from fundamental particle physics theories with new CP-violation Nonperturbative QCD, atomic & nuclear structure • Non-equilibrium quantum transport • Non-zero T and m • Spacetime dynamics of cosmic phase transitions
Overview Theory: Non-equilibrium QFT & quantum transport Phenomenology: SUSY Outlook & Open Issues How to compute rB systematically from Lnew Outline
BBN WMAP Baryon Asymmetry of the Universe (BAU)
Present universe Early universe Weak scale Planck scale Baryogenesis: Ingredients Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967
, Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Baryogenesis: Ingredients
Present universe Early universe ? ? Weak scale baryogenesis can be tested experimentally Weak scale Planck scale Baryogenesis: Ingredients Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967
Present universe Early universe Key Ingredients • Heavy nR • mn spectrum • CP violation • L violation Leptogenesis b-decay, 0n bb-decay, q13 Weak scale Planck scale Leptogenesis
Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Kuzmin, Rubakov, Shaposhnikov McLerran,… EW Baryogenesis: Standard Model Anomalous Processes Different vacua: D(B+L)= DNCS Sphaleron Transitions
Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • EW PT too weak Increasing mh EW Baryogenesis: Standard Model
Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Sakharov, 1967 • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics Unbroken phase CP Violation
CKM fdSM dexp dfuture Also 225Ra, 129Xe, d If new EWK CP violation is responsible for abundance of matter, will these experiments see an EDM? EDM Probes of New CP Violation
Better theory Present n-EDM limit Proposed n-EDM limit Matter-Antimatter Asymmetry in the Universe ? M. Pendlebury B. Filippone “n-EDM has killed more theories than any other single experiment”
Systematic treatment of transport dynamics w/ controlled approximations Baryogenesis and EDMs: Better Theory ? Non-equilibrium quantum transport RHIC Violent departure from equilibrium Electroweak Baryogenesis “Gentle” departure from equilibrium
CPV phases Parameters in Lnew Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations)
1st order 2nd order Increasing mh 1st order PT in MSSM: mh < 120 GeV mh>114.4 GeV Constraint on mhrelaxed for larger gauge/Higgs sector (NMSSM, etc.) or ~ 90 GeV (SUSY) Systematic Baryogenesis: MSSM LEP EWWG See, e.g., Kang et al for U(1)’
Unbroken phase Topological transitions Broken phase nL produced in wall & diffuses in front 1st order phase transition FWS(x) !0 deep inside bubble Systematic Baryogenesis Cohen, Kaplan, Nelson Joyce, Prokopec, Turok “snow”
Unbroken phase Topological transitions … + Compute from first principles given Lnew Broken phase 1st order phase transition = + + Systematic Baryogenesis Riotto Carena et al Lee, Cirigliano, Tulin, R-M Quantum Transport Equation Schwinger-Dyson Equations
… + = + + Systematic Baryogenesis Departure from equilibrium • Non-adiabatic evolution of states & degeneracies • Non-thermal distributions Generalized Green’s Functions: Closed Time Path Exploit scale hierarchy: expand in scale ratios e
T > 0: Degeneracies M(T) GP(T) vW > 0: Non-adiabaticity Decoherence time: td ~ 1/(vW k) vW e.g., particle in an expanding box Scale Hierarchy Time Scales Plasma time: tP ~ 1/GP
k = kEFF(l,Lw) n=1 n=2 n=3 Quantum Decoherence L L + DL
ep = tint / tP ~ GP / w << 1 Time scales: << 1 ed = tint / td ~ vwk/ w tint ~ 1/w tP ~ 1/GPtd ~ 1/(vwk) GP ~ 3Cf aT/ 8 w2 ~ m2 +2pa Cf T2+ k2 Energy scales: k / w < 1 vw ~ 0.1 em = m / T << 1 Scale Hierarchy
= + CP violating sources Expand in ed,p,m + Chiral Relaxation From S-D Equations: Producing nL = 0 Strong sphalerons • SCPV • GM , GH , GY , GSS • SCPV • GM , GH , GY … + Riotto, Carena et al, Lee et al Lee et al Numerical work: • GSS Currents Links CP violation in Higgs and baryon sectors Quantum Transport Equations
Near degeneracies resonances BBN WMAP de de 199Hg 199Hg BAU BAU Lee et al EDM constraints & SUSY CPV Different choices for SUSY parameters
Dark Matter Constraints Future: EDMs & LHC de dn BBN WMAP Disfavored Lee et al Large Hadron Collider Large Hadron Collider Cirigliano, Profumo, MR-M in preparation EDM constraints & SUSY CPV
Non-equilibrium Quantum Field Theory Closed Time Path (CTP) Formulation Conventional, T=0 equilibrium field theory:
Non-equilibrium Quantum Field Theory Two assumptions: • Non-degenerate spectrum • Adiabatic switch-on of LI LI
T > 0: Degeneracies M(T) GP(T) vW > 0: Non-adiabaticity Decoherence time: td ~ 1/(vW k) vW Non-equilibrium T>0 Evolution Time Scales Plasma time: tP ~ 1/GP
Path ordering operator - + Non-equilibrium T>0 Evolution
Non-equilibrium T>0 Evolution Generalized Green’s Functions
… = + + + Non-equilibrium T>0 Evolution Schwinger-Dyson Equations A few formal manipulations
Source causality quantum memory Dirac fermions Dirac & Majorana fermions G>,< & S >,< : CPV, CPC relaxation… Quantum Transport
ep = tint / tP ~ GP / w << 1 Time scales: << 1 ed = tint / td ~ vwk/ w tint ~ 1/w tP ~ 1/GPtd ~ 1/(vwk) GP ~ 3Cf aT/ 8 w2 ~ m2 +2pa Cf T2+ k2 Energy scales: k / w < 1 vw ~ 0.1 em = m / T << 1 Scale Hierarchy
O(ed) Systematic Expansion Distribution functions
Approximations • neglect O(e3) terms Source terms S(x)CPV ~ edep S(x)CP ~ emep df contributions: higher order in ed Systematic Expansion Small e expansion
CPV phases: jA , jm Supersymmetric Sources (mSUGRA)
CPV phase: jm Supersymmetric Sources (mSUGRA)
Approximations Approximations • neglect O(e3) terms • supergauge equilibrium: • neglect O(e3) terms • supergauge equilibrium: • Higgs vev expansion (end of talk) Neutral gauginos = Majorana fermions Supersymmetric Sources (mSUGRA)
O (edep) O (emep) Supersymmetric Sources (mSUGRA)
O (edep) O (emep) Supersymmetric Sources (mSUGRA)
Approximations • neglect O(e3) terms • supergauge equilibrium: • Higgs vev expansion • Yukawa decoupling Links rB to Higgsinos Supersymmetric Sources (mSUGRA) Previous work: GY >> G(-,+) Effect decouples: O (emep)
Approximations • neglect O(e3) terms • supergauge equilibrium: • Higgs vev expansion • Yukawa decoupling • Fast supergauge int Supersymmetric Sources (mSUGRA) (Super) gauge interactions
Analogous expression for SCPV: O (edep) ~ vW Supersymmetric Sources (mSUGRA) O (emep)
Supersymmetric Sources (mSUGRA) Resonance Effects
Strong Sphalerons Relaxation coeff Profile function Supersymmetric Transport Equations Coupled Transport Equations: Baryon number production:
Fi = Fi(T ,vw , Mi ,…) Baryon Number
Linear comb of the Gi O(Gws/GY) corrections omitted Baryon Number