160 likes | 298 Views
Singular perturbations for an elastic model of the heart. Jérôme Pousin. 24 juin 2008. Objectives. RV. LV. Extract the heart anatomy (3-D+t segmentation) Combine complementary functional data (Multimodal registration). Difficulties. patient movement
E N D
Singular perturbations for an elastic model of the heart Jérôme Pousin 24 juin 2008
Objectives RV LV • Extract the heart anatomy • (3-D+t segmentation) • Combine complementary functional data • (Multimodal registration) Difficulties • patient movement • moving deformable organ • acquisition geometry • the anatomy cannot be easily determined in all modalities
Segmentation of the heart using an elastic deformable template 1. Elastic deformable template 2. Boundary regularization 3. Singular perturbation 4. Sketch of the proof ICJ
Theoretical context t(x) u(x) Superficial forces x Initial domain Deformed domain Continuum mechanics : equilibrium of an elastic body
Theoretical context Equilibrium Stress tensor Potential energy Stress vector Strain vector External energy Elastic energy
Elastic deformable template [Vincent, 2001] Incremental load Assumption : small displacements
Elastic deformable template Iterative local formulation Discretized expression
Computing a 3-D force field Force field deriving from a potential image - Potential minimum on the object border Gradient vector flow [Xu, 1998] Imposed condition Force field null on the border of the object to be segmented
Computing a 3-D force field Example : cube image
Part 1. Segmentation of the heart using an elastic deformable template 1. Elastic deformable template 2. Improving the model’s convergence 3. Boundary regularization 4. Model inititialization 5. Results of segmentation
Boundary regularization Three-layer model - Ratio of circumferential fibers to longitudinal fibers 10:1 [Streeter, 1969] Longitudinal Circumferential Longitudinal Large isotropic middle layer Thin peripheral layers
Boundary regularization Constitutive law for a fiber-collagen model [Ohayon, 1988] pression fibers Fiber direction Asymptotic model ( 0) [Destuynder, 1996] t1, t2
Boundary regularization Without boundary constraint With boundary constraint Boundary constraint energy
Elastic deformable template Singular perturbation • Formaly take Dt=0 • Vanishing elasticity allows larger motion
Part 1. Segmentation of the heart using an elastic deformable template 1. Elastic deformable template 2. Improving the model’s convergence 3. Boundary regularization 4. Model inititialization 5. Results of segmentation