1 / 14

嘉兴一中 吴旻玲

JIAXING NO.1 MIDDLE SCHOOL. 嘉兴一中 吴旻玲. E-MAIL : sky9810@hotmail.com. 引入. D. C. y. A. B. D 1. E. C 1. E. A 1. B 1. F. C. D. x. B. A. 在正方形 ABCD 中, E 、 F 分别为 CD 、 AD 的中点, 则 AE⊥BF. F. 空间向量的坐标运算. z. z. y. y. y. O. x. z. O. x. x. 空间直角坐标系. (右手系). O. z. P 3. P.

Download Presentation

嘉兴一中 吴旻玲

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. JIAXING NO.1 MIDDLE SCHOOL 嘉兴一中 吴旻玲 E-MAIL: sky9810@hotmail.com

  2. 引入 D C y A B D1 E C1 E A1 B1 F C D x B A 在正方形ABCD中,E、F分别为CD、AD的中点, 则AE⊥BF F

  3. 空间向量的坐标运算

  4. z z y y y O x z O x x 空间直角坐标系 (右手系) O

  5. z P3 P P2 O y P1 P’ x 空间直角坐标系 空间直角坐标系中,如何确定向量的坐标? P(a1,a2,a3) a1 – 横坐标 a2 – 纵坐标 a3 – 竖坐标 起点在原点的向量的坐标即该向量终点的坐标;

  6. z D1 C1 A1 B1 E D C y B A x 空间直角坐标系 正方体ABCD-A1B1C1D1棱长为2 1、说出下列各点的坐标: D、A、B、C、A1、B1 E(E为BB1中点) 2、作出点(1,1,2) 3、写出E(2,2,1)在三个坐标平面内射影的坐标; 在xDy平面内的射影坐标为: (2,2,0) 在xDz平面内的射影坐标为: (2,0,1) 在yDz平面内的射影坐标为: (0,2,1)

  7. 空间向量的坐标运算

  8. z B A P O y x 空间直角坐标系 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点坐标减去起点的坐标 .

  9. 例 1 -2

  10. 例 2 z D1 E C1 A1 B1 F C D y B A x

  11. 右手直角坐标系 解决平行、垂直问题 1,建系设坐标 2,将向量、点坐标化 3,向量的直角坐标运算 小结 空间直角坐标系 空间向量的坐标 与平面向量坐标运算类似 空间向量坐标运算 空间向量坐标运算的应用

  12. 作业 P39 6、7、8、9、10

  13. z D1 A1 B1 E y D C x A B 空间直角坐标系 C1 D(0,2,0) E(2,0,1)

  14. D C A B 练习 O

More Related