1 / 21

HBr , angular distribution analysis E(0 ) Updated , 24.12.2013

HBr , angular distribution analysis E(0 ) Updated , 24.12.2013. Peak “A”. E0,J´=3. E0,J´=4. E. 4 h n ionization / H + formation. H + + Br*. H + + Br. H* + Br*. 3 h n dissociation / H* formation. H* + Br. J´ v´. 2 h n resonance excitation. v´,J´. HX**. Rydb .

akina
Download Presentation

HBr , angular distribution analysis E(0 ) Updated , 24.12.2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HBr, angular distribution analysis E(0) Updated, 24.12.2013

  2. Peak “A”

  3. E0,J´=3

  4. E0,J´=4

  5. E 4 hn ionization / H+ formation H + + Br* H+ + Br H* + Br* 3 hn dissociation / H* formation H* + Br J´ v´ 2 hn resonance excitation v´,J´ HX** Rydb. H+X-/Ion-pair/V H + Br/Br* J´´ v´´= 0 HX r(HX)

  6. According to https://notendur.hi.is/~agust/rannsoknir/papers/jcp121-11802-04.pdf : 3 hn dissociation / H* formation 2 hn resonance excitation

  7. where Unknown (variable in a fit) Unknown (variables in a fit)

  8. BUT simpler for “non Q branches” (O, S) (i.e. for J´´ ¹ J´): 3 hn dissociation / H* formation 2 hn resonance excitation …. i.e. independent of the R´s https://notendur.hi.is/~agust/rannsoknir/papers/jcp121-11802-04.pdf

  9. An alternativewaytoanalysethe angular distributiondatais by theproceduregivenbyChichininet al.:https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf -whichinvolvestheuse of relative intensities of spectral lines IQ/IS and IQ/IO whichcouldbederivedfromour REMPI spectra: H* + Br/Br* ph f HBr** i HBr(Ji)

  10. 1. Determine „b“ factor, viamassresolved REMPI spectra (see p: 9 https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf ) from, 2. Determinealignment parameter A20 (<=„b“ ) (P: 9, https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf) (for Jf = 1) (43) (24) (25)

  11. 3. Determine angular distribution (wf(n)) viab –factor (b (f)) determination for„f“(seeslide10): (P:6 (and 9), https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf) (30) ;Jf = 1 See: http://mathworld.wolfram.com/LegendrePolynomial.html 4. Determinethe angular distribution for one-photonphotodissociation of theunpolarized „f“ state (i.e. w (n,nph)) from for k = 1 (onephoton), wherew (n) is thephotofragment angular distributionproducedby amultiphotonexcitationviatheintermediatestate (i.e. angular distributionderivedfromour experiments) (see p: 6 in https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf ) (1)ph

  12. 1. Determine „b“ factor, viamassresolved REMPI spectra (see p: 9 https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf ) from, a´ c´ d´ a´´ c´´ d´´ Detailed analysis, see : agust,heima, …./PPT-131219.pptx

  13. https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-131221.xlsxhttps://notendur.hi.is/~agust/rannsoknir/Crete/XLS-131221.xlsx

  14. 2. Determinealignment parameter A20 (<=„b“ ) (P: 9, https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf) (for Jf = 1) (43) (24) (25)

  15. Alignment parameter A20: http://www.ejournal.unam.mx/rmf/no503/RMF50315.pdf , p:319 A20(Jf=1) A20(max) =+0.5 b=-0.5 parallel. domin. b=1 Perpend. domin. A20(min) = -1 b https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-131222.pxp; Gr0,Lay0 <= https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-131221.xlsx

  16. Alignment parameter A20: http://www.ejournal.unam.mx/rmf/no503/RMF50315.pdf , p:319 A20(Jf) Jf = 11 2 1 A20(max;Jf=1) =+0.5 Our A20values = A20 (b = 1.1; b2 = 1.2) b=-0.5 parallel dominant Jf= 1 2 11 A20(min;Jf=1) = -1 b = 1 Perpendiculardominant b factor https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-131222.pxp; Gr0,Lay0 <= https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-131221.xlsx

  17. f <-<- i transitiondominantlyperpendiculartransition, i.e. S <- P <- S 3. Determine angular distribution (wf(n)) viab –factor (b (f)) determination for„f“(seeslide10): (P:6 (and 9), https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf) (30) ;Jf = 1 See: http://mathworld.wolfram.com/LegendrePolynomial.html https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-131221.xlsx

  18. wf(n; Jf =1) q https://notendur.hi.is/~agust/rannsoknir/Crete/PXP-131222.pxp; Gr1,Lay1<= https://notendur.hi.is/~agust/rannsoknir/Crete/XLS-131221.xlsx

  19. J´> 1: https://notendur.hi.is/~agust/rannsoknir/papers/jcp125-034310-06.pdf: i.e.: (https://notendur.hi.is/~agust/rannsoknir/papers/jcp121-11802-04.pdf) -butto a first approximation (?) bL = 0 for L = 4,6,…. ERGO: the angular distributionshownonslide 18 holds for all Jf´s ! -in whichcasethealteration in angular distributionvs. J observed (Slide 2) is duetothephotofragmentationstep(?!)

  20. Nowwhat?!How do wederive w(n,nph) ? (1)ph Howabout a „fittingprocedure“:

  21. i.e. somethinglike: (1) + A ~ Experiment ph f b(ph) f i 0 180 q -for redcoloured parameters unknown => deriveb(ph)

More Related