1 / 35

Phantom Types and Subtyping

Phantom Types and Subtyping. Matthew Fluet Riccardo Pucella Dept. of Computer Science Cornell University. The Setting (I). Modern strongly typed functional language Parametric polymorphism val id:    = fn x => x Type constraints val idInt: int  int = fn x => x

akiva
Download Presentation

Phantom Types and Subtyping

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Phantom Types and Subtyping Matthew Fluet Riccardo Pucella Dept. of Computer Science Cornell University

  2. The Setting (I) • Modern strongly typed functional language • Parametric polymorphism • val id:  = fn x => x • Type constraints • val idInt: intint = fn x => x • Datatypes and type constructors • datatype  tree = Leaf of  | Node of  tree  tree TCS2002

  3. The Setting (II) • Modern strongly typed functional language • Limited expressibility at foreign function interfaces • No polymorphic types • No user defined datatypes • No primitive notion of subtyping TCS2002

  4. The Problem datatype atom = I of Int | B of bool fun mkI (i:int):atom = I(i) fun mkB (b:bool):atom = B(b) fun toString (v:atom):string = ... fun double (v:atom):atom = ... fun conj (v1:atom, v2:atom):atom = ... toString (mkI 1)  “1” toString (mkB false)  “false” double (mkB true) run-time error conj (mkI 3, mkB true) run-time error TCS2002

  5. Wish List • Raise compile-time type errors on domain violations rather than run-time errors • toString should apply to all atoms • double should only apply to integer atoms • conj should only apply to boolean atoms • Preserve the implementation • Would like to treat integer and boolean atoms as subtypes of all atoms TCS2002

  6. A First Solution (I) type All, Int, Bool datatype atom = I of int | B of bool fun mkI (i:int):Intatom = ... fun mkB (b:bool):Boolatom = ... fun toString (v:Allatom):string = ... fun double (v:Intatom):Int atom = ... fun conj (v1:Boolatom, v2:Boolatom):Boolatom = ... double (mkB true) compile-time type error; Int atom  Bool atom conj (mkI 3, mkB true) compile-time type error; Bool atom  Int atom toString (mkI 1) compile-time type error; Int atom  All atom toString (mkB false) compile-time type error; Bool atom  All atom TCS2002

  7. Phantom Types type All, Int, Bool datatype atom = I of int | B of bool fun mkI (i:int):Intatom = ... fun mkB (b:bool):Boolatom = ... • Phantom types • Abstract types that need not have any corresponding run-time values • Phantom type variables • Type instantiations of  in  atom do not contribute to the run-time representation of atoms TCS2002

  8. A First Solution (II) type All, Int, Bool datatype atom = I of int | B of bool fun mkI (i:int):Intatom = ... fun mkB (b:bool):Boolatom = ... fun toString (v:Allatom):string = ... fun double (v:Intatom):Int atom = ... fun conj (v1:Boolatom, v2:Boolatom):Boolatom = ... fun intToAll (v:Int atom):All atom = v fun boolToAll (v:Bool atom):All atom = v toString (intToAll (mkI 1))  “1” toString (boolToAll (mkB false))  “false” TCS2002

  9. A Better Solution type All, Int, Bool datatype  atom = I of int | B of bool fun mkI (i:int):Intatom = ... fun mkB (b:bool):Boolatom = ... fun toString (v:atom):string = ... fun double (v:Intatom):Int atom = ... fun conj (v1:Boolatom, v2:Boolatom):Boolatom = ... double (mkB true) compile-time type error; Int atom  Bool atom conj (mkI 3, mkB true) compile-time type error; Bool atom  Int atom toString (mkI 1) well typed; Int atom unifies with  atom toString (mkB false) well typed; Bool atom unifies with  atom TCS2002

  10. The Phantom Types Technique • Use a superfluous type variable and type constraints to encode “extra” information • Underlies many interesting uses of type systems • Foreign function interfaces • Embedded languages • Uncaught exception analysis • A “folklore” technique TCS2002

  11. Contributions • A general encoding of subtyping hierarchies into phantom types • A formalization of one use of the phantom types technique TCS2002

  12. Outline • A recipe for interfaces and implementations • Encoding subtyping hierarchies • Bounded polymorphism • Formalization TCS2002

  13. Features of the example An underlying primitive type of values A set of operations A hierarchy of implicit subtypes mkI 1 Int int atom toString All  string  atom  string All Int Bool From Subtyping to Polymorphism TCS2002

  14. The Recipe • Given: • A primitive type p • An implicit subtyping hierarchy 1,…,n • An implementation of p and its operations • Derive • A “safe” interface (the types) • A “safe” implementation (the code) • Restrictions • Shared representation and operations TCS2002

  15. Applying the Recipe • Given: • A primitive type: atom • An implicit subtyping hierarchy: All, Int, Bool • An implementation: structure Atom • Derive • A “safe” interface: signature SAFE_ATOM • A “safe” implementation: structure SafeAtom TCS2002

  16. Deriving the Interface (I) • 1C unifies with 2A iff 12 • Introduce type  • Encode each implicit type  as   • 1 unifies with 2 iff 12 • Example: • AllC = unit AllA =  • IntC = int IntA = int • BoolC = bool BoolA = bool TCS2002

  17. Deriving the Interface (II) • Use concrete encodings in all covariant type positions • Use abstract encodings in most contravariant type positions TCS2002

  18. Deriving the Interface (III) signature ATOM = sig type atom val mkI: int -> atom val mkB: bool -> atom val toString: atom -> string val double: atom -> atom val conj: atom * atom -> atom end  signature SAFE_ATOM = sig type  atom val mkI: int -> IntCatom val mkB: bool -> BoolCatom val toString: AllAatom -> string val double: IntAatom -> IntCatom val conj: BoolAatom * BoolAatom -> BoolCatom end TCS2002

  19. Applying the Recipe • Given: • An abstract type: atomp • An implicit subtyping hierarchy: All, Int, Boolp • An implementation: structure Atomp • Derive • A “safe” interface: signature SAFE_ATOM • A “safe” implementation: structure SafeAtom  TCS2002

  20. Deriving the Implementation (I) • Need a type  isomorphic to p • the type system should consider 1 and 2 equivalent iff 1 and 2 are equivalent • Opaque signature constraint • Hides all type implementation details TCS2002

  21. Deriving the Implementation (II) structure SafeAtom1:> SAFE_ATOM = struct type  atom = Atom.atom val mkI = Atom.mkI val mkB = Atom.mkB val toString = Atom.toString val double = Atom.double val conj = Atom.conj end TCS2002

  22. Applying the Recipe • Given: • An abstract type: atomp • An implicit subtyping hierarchy: All, Int, Boolp • An implementation: structure Atomp • Derive • A “safe” interface: signature SAFE_ATOM • A “safe” implementation: structure SafeAtom   TCS2002

  23. Encoding Subtyping Hierarchies (I) • Powerset lattice encoding • S = {s1,…,sn} is a finite set • Ordered by inclusion X  S XC= t1  …  tn where ti = unit if si  X unit z otherwise XA= t1  …  tn where ti = i if si  X i z otherwise TCS2002

  24. All = {s1, s2} Int = {s1} Bool = {s2} None = {} Encoding Subtyping Hierarchies (II) AllC = unit  unit IntC = unit  unit z BoolC = unit z  unit NoneC = unit z  unit z AllA = 1 2 IntA = 1 2 z BoolA = 1 z 2 NoneA = 1z 2 z TCS2002

  25. Encoding Subtyping Hierarchies (III) • Any finite hierarchy can be embedded in the powerset lattice of a set S • Better encodings for specific classes of hierarchies TCS2002

  26. Bounded Polymorphism • Extends both parametric polymorphism and subtyping • double: Int.   • toString: All.  string • plus: Int.(  )   • Provides a connection between type instantiation and subtyping • We can safely encode a restricted form of bounded polymorphism using a simple extension of our recipe TCS2002

  27. Formalization • Translation • From a language with a restricted form of bounded polymorphism • To a language with parametric polymorphism • Using the “recipe” given earlier • See paper for details TCS2002

  28. Conclusion • Use type equivalence to encode information in a free type variable • Use unification to enforce a particular relation on the information • Practical issues • complexity of types TCS2002

  29. TCS2002

  30. The Problem (II) datatype atom = I of int | B of bool fun mkI (i:int):atom = I(i) fun mkB (b:bool):atom = B(b) fun toString (v:atom):string = case v of I(i) => Int.toString(i) | B(b) => Bool.toString(b) fun double (v:atom):atom = case v of I(i) => I (2 * i) | _ => raise (Fail “type mismatch”) fun conj (v1:atom, v2:atom):atom = case (v1,v2) of (B(b1),B(b2)) => B (b1 andalso b2) | _ => raise (Fail “type mismatch”) TCS2002

  31. A Better Solution (II) type All = Int = Bool = unit datatype atom = I of int | B of bool fun mkI (i:int):Intatom = I(i) fun mkB (b:bool):Boolatom = B(b) fun toString (v:atom):string = case v of I(i) => Int.toString(i) | B(b) => Bool.toString(b) fun double (v:Intatom):Intatom = case v of I(i) => I (2 * i) | _ => raise (Fail “type mismatch”) fun conj (v1:Boolatom, v2:Boolatom):Boolatom = case (v1,v2) of (B(b1),B(b2)) => B (b1 andalso b2) | _ => raise (Fail “type mismatch”) TCS2002

  32. Bounded Polymorphism (I) • Extends both parametric polymorphism and subtyping • . • .() TCS2002

  33. Bounded Polymorphism (II) • IntA  IntC • Example: NatInt • double:Int.   • IntA  IntA •    where  = IntA • plus: Int.(  ) •      where  = IntA • plus (mkI 1, natToInt (mkN 2)) TCS2002

  34. Bounded polymorphism (III) • Limitations • Type variable bounds • ..()   •      where  = A and  = A • First-class polymorphism • Functional subtyping • (1  2).  2 •   2C where  = 1C  2A TCS2002

  35. Formalization (II) let f1 = 11 . x:1. c1 x in … let fn = nn . x:n. cn x in []  “safe” interface types TCS2002

More Related