1 / 12

Default Logic

Default Logic. Proposed by Ray Reiter (1980) go_Work → use_car Does not admit exceptions! Default rules go_Work : use_car use_car. More examples. anniversary(X)  friend(X) : give_gift(X) give_gift(X) friend(X,Y)  friend(Y,Z) : friend (X,Z) friend(X,Z) accused(X) : innocent(X)

alagan
Download Presentation

Default Logic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Default Logic • Proposed by Ray Reiter (1980) go_Work → use_car • Does not admit exceptions! • Default rules go_Work : use_car use_car

  2. More examples anniversary(X)  friend(X) : give_gift(X) give_gift(X) friend(X,Y)  friend(Y,Z) : friend (X,Z) friend(X,Z) accused(X) : innocent(X) innocent(X)

  3. Default Logic Syntaxe • A theory is a pair (W,D), where: • W is a set of 1st order formulas • D is a set of default rules of the form: j : Y1, … ,Yn g • j (pre-requisites), Yi (justifications) and g (conclusion) are 1st order formulas

  4. The issue of semantics • If j is true (where?) and all Yi are consistent (with what?) then g becomes true (becomes? Wasn’t it before?) • Conclusions must: • be a closed set • contain W • apply the rules of D maximally, without becoming unsupported

  5. Default extensions • G(S) is the smallest set such that: • W G(S) • Th(G(S)) = G(S) • A:Bi/C  D, A G(S) and Bi  S → C G(S) • E is an extension of (W,D) iff E = G(E)

  6. Quasi-inductive definition • E is an extension iff E = i Ei where: • E0 = W • Ei+1 = Th(Ei) U {C: A:Bj/C  D, A  Ei, Bj E}

  7. Some properties • (W,D) has an inconsistent extension iff W is inconsistent • If an inconsistent extension exists, it is unique • If W  Just  Conc is inconsistent , then there is only a single extension • If E is an extension of (W,D), then it is also an extension of (W  E’,D) for any E’  E

  8. Operational semantics • The computation of an extension can be reduced to finding a rule application order (without repetitions). • P = (d1,d2,...) and P[k] is the initial segment of P with k elements • In(P) = Th(W  {conc(d) | dP}) • The conclusions after rules in P are applied • Out(P) = {Y | Y just(d) and dP } • The formulas which may not become true, after application of rules in P

  9. Operational semantics (cont’d) • d is applicable in P iff pre(d)  In(P) and Y In(P) • P is a process iff dkP, dk is applicable in P[k-1] • A process P is: • successful iff In(P) ∩ Out(P) = {}. • Otherwise it is failed. • closed iff d D applicable in P→dP • Theorem: E is an extension iff there exists P, successful and closed, such that In(P) = E

  10. Computing extensions (Antoniou page 39) extension(W,D,E) :- process(D,[],W,[],_,E,_). process(D,Pcur,InCur,OutCur,P,In,Out) :- getNewDefault(default(A,B,C),D,Pcur), prove(InCur,[A]), not prove(InCur,[~B]), process(D,[default(A,B,C)|Pcur],[C|InCur],[~B|OutCur],P,In,Out). process(D,P,In,Out,P,In,Out) :- closed(D,P,In), successful(In,Out). closed(D,P,In) :- not (getNewDefault(default(A,B,C),D,P), prove(In,[A]), not prove(In,[~B]) ). successful(In,Out) :- not ( member(B,Out), member(B,In) ). getNewDefault(Def,D,P) :- member(Def,D), not member(Def,P).

  11. Normal theories • Every rule has its justification identical to its conclusion • Normal theories always have extensions • If D grows, then the extensions grow (semi-monotonicity) • They are not good for everything: • John is a recent graduate • Normally recent graduates are adult • Normally adults, not recently graduated, have a job (this cannot be coded with a normal rule!)

  12. Problems • No guarantee of extension existence • Deficiencies in reasoning by cases • D = {italian:wine/wine french:wine/wine} • W ={italian v french} • No guarantee of consistency among justifications. • D = {:usable(X),  broken(X)/usable(X)} • W ={broken(right) v broken(left)} • Non cummulativity • D = {:p/p, pvq:p/p} • derives p v q, but after adding p v q no longer does so

More Related