190 likes | 368 Views
D ecoding Dusty Debris Disks. David J Wilner Harvard-Smithsonian Center for Astrophysics. AAAS, Februrary 2014. Debris Disk Primer. far-infrared surveys of nearby stars reveal thermal dust emission from reprocessed starlight, F dust /F * < 10 -3. Fomalhaut. star.
E N D
Decoding Dusty Debris Disks David J Wilner Harvard-Smithsonian Center for Astrophysics AAAS, Februrary 2014
Debris Disk Primer • far-infrared surveys of nearby stars reveal thermal dust emission from reprocessed starlight, Fdust/F* < 10-3 Fomalhaut star Hubble, Kalas et al. 2013 dust Stapelfeldt et al. 2004 • images show disks • dust must be replenished reservoirs of large bodies
Descendents of Protoplanetary Disks Fomalhaut
The Solar System Debris Disk • Kuiper Belt (42-48 AU) and asteroid belt (2-3.5 AU) • dust-producing bodies in stable belts and resonances ESA A. Felid/STScI • encodes planetary system architecture and dynamical history
Debris Disks and Planetary Systems HR 8799 • outcomes of planet formation • Solar System configuration in context • planet detection from disk perturbations • habitability of terrestrial planets Fomalhaut bPictoris HD 95086 HD 106906
Millimeter Emission traces Planetesimals • collisional cascade creates smaller and smaller fragments • micron-size dust blown out • large dust can’t travel far b = F*/Fgrav Krivov 2010 Nature/ISAS/JAXA
20 Myr-old Sister Stars with Debris Disks • Pictoris • Roptical > 800 AU AU Microscopi Roptical > 200 AU Kalas 2004
Scattered Light Midplane Profiles “birth-ring” of planetesimals predicted at break in power-law profile Keck, Liu 2004 Hubble, Golimowski et al. 2006 AU Mic break at R = 40 AU bPic break at R =130 AU scattered light Strubbe & Chiang 2006
ALMA Reveals Millimeter Emission Belts Cycle 0, 20+ antennas, 2 hours, <1 arcsecond resolution bPic Rmm=130 AU AU Mic Rmm = 40 AU Dent et al., submitted MacGregor et al. 2013
AU Mic Millimeter Emission Modeling contours: ±4,8,12,.. x 30 μJy outer belt + central peak
AU MicOuter Dust Belt Properties • outer edge at 40 AU, matches break in scattered light profile • surface density of planetesimalsriseswith radius, an outward wave of planet formation? • no detectable asymmetries in structure or position (still compatible with presence of a Uranus-like planet) T. Pyle/NASA
AU MicCentral Peak Emission • unresolved and 6x stronger than stellar photosphere! • stellar corona? models can match millimeter and X-ray • asteroid-like belt at R<3 AU? compatible with infrared limits Cranmer et al. 2014
AU Mic Higher Resolution Simulations • easy to resolve an asteroid belt with 0.25 arcsec resolution • a stellar corona will remain unresolved • we’ll find out from ALMA in Cycle 1 (PI M. Hughes) Inner Dust Belt Stellar Corona
ALMA Observes (half) the Fomalhaut Disk • millimeter emissionbelt narrower than optical scattered light Hubble (blue) ALMA (orange) Boley et al. 2012 Saturn F Ring planetesimalsconfined by shepherding planets?
Secondary Molecular Gas in bPictoris • ALMA detects CO J=3-2 emission • 30% from one compact clump • icy planetesimals shattered by collisions? • destruction of large comet every 5 minutes • trapping in the resonances of an outer planet could account for localized gas production • sputtering? colliding Mars-mass bodies? Dent et al., submitted
HD 10647: A Very Dusty Debris Disk • similar to our Solar System • Sun-like star, F9V type • a Jupiter-like planet at 2 AU • 1000x Kuiper Belt dust at 80 AU What could ALMA see (in an hour)? Stapelfeldt et al. 2007 Liseau et al. 2010 ALMA Cycle 2 simulations
Summary • debris disks result from collisional cascades of planetesimals, relics of planet formation • millimeter emission traces the planetesimals • early ALMA observations reveal Kuiper-like belts and (the first of many) surprises ESA