80 likes | 199 Views
Morphism Partial-Order Integer E integer le axioms theorems. Specifications and Morphisms. Spec Partial-Order sort E op _ le_ : E , E Boolean axiom reflexive x le x axiom transitive x le y y le z x le z
E N D
Morphism Partial-OrderInteger E integer le axioms theorems Specifications and Morphisms Spec Partial-Order sort E op _le_: E, EBoolean axiom reflexive x le x axiom transitive x le y y le z x le z axiom antisymmetric x le y y le x x = y A language translation that preserves provability Specifications Represent Domain models Transportation, Resource, Task Software Requirements Crew Scheduling Algorithm Theories Global-Search Abstract Data Types Set(Integer) Software Architecture Scheduling-System Code Modules Network-Flow Morphisms Represent Spec Structuring TaskSchedulingResource Parameter Binding Time Integer Spec Refinement SchedulingTransportationScheduling Algorithm Design Global-SearchScheduling Knowledge Refinement Constraint SatisfactionInteger Programming Datatype Refinement Set(Integer)Bit Vector
Taxonomy of Collection Datatypes PROTO-COLLECTION LIST PROTO-SEQ SEQ SEQ ARRAY PROTO-BAG BOUNDED-SEQ BAG PROTO-SET BAG SET BIT-VECTOR INDEXED-PARTITION SET(TUPLE) SET-of-NAT-upto-k ORDERED-SEQ SET-OVER-LINEAR-ORDER
Planware Refinements Abstract Scheduling Resource po Transportation Resource Transportation Scheduling 0 Task po Semilattice Attribute of Task Transportation Tasks TS 1 po Definite Constraint TS2 Set(ABC) po Indexed-Partition map(A, Set(ABC)) TS3 Set-over-linear-order po TS4 Ordered-Seq
Planware Refinements TS4 DRO Global Search TS5 Global Search with CP TS6 po Global Search program TS7 Definite Constraints Constraint Propagation algorithm po Expr + Context TS8 po Context-Dependent Simplification TS9 Sort + n-attributes po n-tuple TS10
Derivation of a k-Queens Algorithm 0. Requirement Spec -- a solution is a sequence of the positions of queens in each column 1. Algorithm Design -- a global search strategy is used to enumerate queens solutions 2. Context-dependent Simplification 3. Finite Differencing -- to derive the components of ok-mask 4. Datatype Refinement -- bounded sets bit-vectors 5. Recursion Monadic definitions 6. Monadic Imperative definitions -- via closure removal 7. Slicing -- to remove unnecessary ops, sorts, and axioms 8. Code Generation -- to imperative CommonLisp, C
A Simple Transformation Rule Transformation rule Expression if empty(S) then 0 else 0 b=c if @P then @b else @c=b Designware Library Refinement Spec EXPR is sort E op expr : E Spec Source is import EXPR op P: Boolean op b: E op c: E def expr = if P then b else c axiom b = c Spec Target is import Source theorem expr = b
A Fusion Law if f(x y) = x f(y) and and are associative then f(foldr(, xs, unit)) = foldr(, xs, f(unit)) spec FOLDR-FUSION is import Seq-of-A sort E op f: A E op : A A A axiom associative?( ) op unit: A op foldr : (A A A) Seq-of-A A A def foldr(g,as,u) = ... op : A E E axiom associative?( ) op foldr : (A E E) Seq-of-A A E def foldr(g,as,u) = ... theorem foldr-fusion-law is xf(y) = f (x y) f(foldr(, xs, unit)) = foldr( , xs, f(unit)) end-spec
A Fusion Law if f(x y) = x f(y) and and are associative then f(foldr(, xs, unit)) = foldr(, xs, f(unit)) Spec EXPR is sort E op expr : E spec foldr-fusion is import EXPR, Seq-of-A op f: A E op : A A A op foldr : (A A A) Seq-of-A A A op : A E E axiom associativity of , axiom expr = f(foldr(, xs, unit)) axiom f (x y) = xf(y) end-spec spec fold-fusion-law is import fold-fusion op foldr : (A E E) Seq-of-A A E theoremf(foldr(, xs, unit)) = foldr( , xs, f(unit)) end-spec