1 / 18

Area, Centroid, Moment of Inertia, Radius of Gyration

Area, Centroid, Moment of Inertia, Radius of Gyration. Dr. Mohammed E. Haque, P.E. Professor Department of Construction science. y. A = b h I x = b h 3 /12 I y = h b 3 /12. x. h. b. Area, Moment of Inertia. Centroid. Area, Moment of Inertia. y. A = 0.5 b h I x = b h 3 /36

alaula
Download Presentation

Area, Centroid, Moment of Inertia, Radius of Gyration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Area, Centroid, Moment of Inertia, Radius of Gyration Dr. Mohammed E. Haque, P.E. Professor Department of Construction science COSC321Haque (PPT_C7)

  2. y A = b h Ix = b h3 /12 Iy = h b3 /12 x h b Area, Moment of Inertia Centroid COSC321Haque (PPT_C7)

  3. Area, Moment of Inertia y A = 0.5 b h Ix = b h3 /36 Iy = h b3 /36 h x Centroid h/3 b/3 b COSC321Haque (PPT_C7)

  4. Area, Moment of Inertia Y Centroid X R A = π R2 Ix = Iy = π R4 /64 COSC321Haque (PPT_C7)

  5. Radius of Gyration rx =(Ix /A) ry =(Iy /A) COSC321Haque (PPT_C7)

  6. Centroid b/2 A = b h h/2 h Ixc = b h3 /12 dy Ix-x = Ixc + A dy2 = b h3 /12 + b h dy2 b x x Moment of Inertia about an axis parallel to centroidal axis COSC321Haque (PPT_C7)

  7. 20’-0” Y 4’-0” 4’-0” 10’-0” 4’-0” 7’-0” 3’-0” X 3’-0” 14’-0” 3’-0” Area and Centroid Q1: A pre-cast concrete wall panel as shown in fig. Determine (a) Wall Area (b) Centroid (x and y axes referenced from the lower left corner). COSC321Haque (PPT_C7)

  8. A = 163 Sqft X = 1713.5 /163 = 10.512 ft Y = 846.5 /163 = 5.193 ft COSC321Haque (PPT_C7)

  9. y 2” X Y 3” 5” 3” 2” x y 2” 1 5” 3” 3” 2” 2 x Q2: Determine (a) Area (b) Centroid (c ) Moment of Inertia about x and y axes COSC321Haque (PPT_C7)

  10. X = 104 /26 = 4 in Y = 61 /26 = 2.346 in (a) Area; (b) Centroid • AREA, A = 26 Sqin. • (b) COSC321Haque (PPT_C7)

  11. (c ) Moment of Inertia about the centroidal axes Ixcg = 26.167 + 75.384 = 101.55 in4 Iycg = 88.667 + 0 = 88.667 in4 COSC321Haque (PPT_C7)

  12. Y 1” X 4” 1” 2” 2” 2” • Q3: Determine • Area • Moment of Inertia, Ixc, Iyc • Radius of Gyration, rx, ry COSC321Haque (PPT_C7)

  13. 1 3 Y 2 1” X 4” 1” 2” 2” 2” A= 20 in2 Ix = 11.667 + 75.0 = 86.667 in4 Iy = 38.667 + 0 = 38.667 in4 rx = (86.667/20) = 2.08 in ry = (38.667/20) = 1.39 in COSC321Haque (PPT_C7)

  14. Y 1 1” X 4” 2 1” 2” 2” 2” • Q4: Determine • Area • Moment of Inertia, Ixc, Iyc • Radius of Gyration, rx, ry COSC321Haque (PPT_C7)

  15. Y 1 1” X 4” 2 1” 2” 2” 2” A= 28 in2 Ix = 97.333 in4 Iy = 105.333 in4 rx = (97.333/28) = 1.86 in ry = (105.333/28) = 1.94 in COSC321Haque (PPT_C7)

  16. Y 4” 1” X Y 2” 4” 1 4” 2 1” X 2” 4” • Q5: Determine • Area • Centroid • Moment of Inertia, Ixc, Iyc • Radius of Gyration, rx, ry COSC321Haque (PPT_C7)

  17. X = 26 /14 = 1.86 in Y = 27 /14 = 1.93 in (a) Area; (b) Centroid • AREA, A = 14 Sqin. • (b) COSC321Haque (PPT_C7)

  18. (c ) Moment of Inertia; (d) Radius of gyration Ix = 11.167 + 46.54 = 57.71 in4 Iy = 20.667 + 13.72 = 34.39 in4 rx = (57.71/14) = 2.03 in ry = (34.39/14) = 1.57 in COSC321Haque (PPT_C7)

More Related