1 / 41

第八章 不 定 积 分 §1 不定积分概念与基本积分公式 教学内容: 1 )不定积分的概念 2 )不定积分与微分的关系 3 )不定积分的基本积分公式 4 )不定积分的线性性质

第八章 不 定 积 分 §1 不定积分概念与基本积分公式 教学内容: 1 )不定积分的概念 2 )不定积分与微分的关系 3 )不定积分的基本积分公式 4 )不定积分的线性性质 重点:不定积分与微分的关系,基本积分公式 要求:熟记基本积分公式和不定积分的线性性质. 首先,我们简 要说明积分运算是如何产生的?

alban
Download Presentation

第八章 不 定 积 分 §1 不定积分概念与基本积分公式 教学内容: 1 )不定积分的概念 2 )不定积分与微分的关系 3 )不定积分的基本积分公式 4 )不定积分的线性性质

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第八章不 定 积 分 §1不定积分概念与基本积分公式 教学内容: 1)不定积分的概念 2)不定积分与微分的关系 3)不定积分的基本积分公式 4)不定积分的线性性质 重点:不定积分与微分的关系,基本积分公式 要求:熟记基本积分公式和不定积分的线性性质

  2. 首先,我们简 要说明积分运算是如何产生的? 一般来说,在数学中,一种运算的出现都伴随着它的逆运算。例如,有加就有减,有乘就有除,有乘方就有开方,等等。我们前面学过的微分运算也不例外,它也有逆运算—积分运算。我们已经知道,微分运算的基本问题是研究如何从已知函数求出它的导函数,那么我们很自然地会提出与之相反的问题是:求一个未知函数,使其导函数恰是某一已知函数。提出这样的逆问题,是因为它存在于许多实际的问题中,例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等。要解决这些实际问题,自然会想到微分运算的逆运算,这就是产生积分运算的原因。 为了更好地理解积分运算是导数(微分)运算的逆运算,我们在介绍积分运算时,把乘方运算(开方)和它作比较:

  3. 也熟悉导数运算: 我们熟悉乘方运算: 于是提出新问题: 同样提出问题: 这不是乘方运算,而是它的逆运算— 开方运算。 这不是求导运算,而是它的逆运算— 积分运算。 一般来说,在下式里 同样,在下式里

  4. 通过上面的比较,对积分运算与原函数有了初步认识,以下先给出原函数与不定积分的有关的定义。通过上面的比较,对积分运算与原函数有了初步认识,以下先给出原函数与不定积分的有关的定义。 一、原函数与不定积分

  5. §2 换元积分法与分部积分法

  6. §3 有理函数的不定积分 一、有理函数的不定积分内容: 1)有理函数的部分分式分解 2)有理函数的不定积分 难点:有理函数的部分分式分解 要求:掌握有理函数的积分方法 我们已经学习了不定积分的三种基本积分方法 第一换元法,第二换元法,分部积分法。灵活的应用 它们,就可以求出许多不定积分。 有理函数是指两个多项式的商表示的函数:

  7. 先介绍代数学中两个定理: 定理1 (多项式的因式分解定理)任何实系数多项式总那个可以 唯一分解为实系数一次或二次因式的乘积:

  8. 定理2( 部分分式展开定理):

  9. 因此有理函数的积分问题就归结为计算 与 例 1.求不定积分 将被积函数按部分分式分解: 两边同乘 比较同次项系数:

  10. 解此方程组得: A = -3 ,B = 5 由此得到 : 所以 例 2 解 将分母分解因式

  11. 因此可分成部分分式 两边同乘 比较同次项系数得

  12. 从而得方程组: 解此方程组得: A =1 B =2 C =-1 D =-1 E =1 从而:

  13. 小结: 1、有理函数的原函数一定是初等函数; 2、求有理函数不定积分的步骤: 1)、若被积函数是有理假分式,则通过多项式除法,把它化成 多项式+有理真分式; 2)、用部分分式展开定理把有理真分式化成若干个简单分式之 和,用比较系数法或赋值法求出各待定系数。 3)、求出各个简单分式的不定积分, 则有理函数的不定积分=多项式的不定积分(若是有理假分式, 则必有此项积分)+各个简单分式的不定积分。

More Related