1 / 68

核磁共振光譜與影像導論

核磁共振光譜與影像導論. Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen University. Applications of Solid State NMR. Polymers Glasses Porous materials Liquid crystals.

alcina
Download Presentation

核磁共振光譜與影像導論

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and ImagingLecture09 Applications of Solid State NMR(Spring Term, 2011)Department of ChemistryNational Sun Yat-sen University

  2. Applications of Solid State NMR • Polymers • Glasses • Porous materials • Liquid crystals

  3. Schematic of a typical semicrystalline linear polymer

  4. Stereochemical issue in substituted polymers

  5. Signature of stereoregularity in the solid state spectrum

  6. Static 2D exchange spectrum for polyethyleneoxide (PEO) Experiment Simulation

  7. 3D static 13C exchange spectra of polyethyleneoxide polyvinylacetate

  8. Applications • Polymers • Glasses • Porous materials • Liquid crystals

  9. Static whole-echo 207Pb NMR spectrain Pb-silicate glasses mol % PbO 66 50.5 31 Linewidth ~400 kHz @ 9.4 T —> signals of 6 experiments summed up 4000 0 -4000 ppm

  10. Sodium silicate glasses Static 17O NMR spectra bridging (BO) and non-bridging (NBO) oxygens Na2Si2O5 Na2Si3O7 Na2Si4O9 NBO BO 600 0 -600 ppm

  11. Structure of glasses (I) NBO BO

  12. 29Si NMR spectra for sodium silicate glasses static MAS Q4 mole % Na2O 34 37 41 Q3 Q2 Q3 + Q2 0 -100 -200 ppm -60 -80 -100

  13. Structure of glasses (II) Q4 Q2 Q3 Q1

  14. 1H-29Si CPMAS intensity as a function of contact time Q2 Q3 Q4 Different sites in a Na2Si4O9 glass with 9.1 wt% H2O 0 20 40 contact time (ms)

  15. Efficiency for (1H 29Si)-CP Acquisition 29Si CP decoupling 1H t

  16. 29Si MAS NMR spectra for a CaSi2O5 glass SiO4 SiO5 SiO6 x 8 glass crystal quenched from a10 GPa pressure meltisotopically enriched high pressure phasenormal isotopes -50 -100 -150 -200 ppm

  17. 11B MAS NMR spectra for a sodium borate glass (with 5 mole% Na2O) data fit slow cooled fast cooled R BO4 NR 30 15 0 ppm data fit R BO4 NR

  18. 31P MAS NMR spectra for sodium phosphate glasses mol % Na2O 56 53 40 30 15 5 Q1 Q2 Q3 100 0 -100 ppm

  19. 31P double-quantum NMR spectrum Q2 Q1 -60 2-2 Double-quantum dimension (ppm) 1-2 2-1 1-1 0 0 -30 Single-quantum dimension

  20. 1H MAS NMR spectrum for a GeO2-doped silica glass loaded with H2and UV-irradiated after subtraction of intense back- ground signal SiOH + GeOH GeH 9.4 T, 10 kHz spinning 12 6 0 -6 ppm Sample contains ~8 ´1019 H atoms/cm3(corresponding to about 500 ppm of H2O)

  21. 17O 3QMAS NMR spectrum for a glass on the NaAlO2-SiO2 join with Si/Al = 0.7 -50 0 50 100 MAS dimension (ppm) Al-O-Al Si-O-Al 0 -10 -20 -30 -40 -50 Isotropic dimension (ppm)

  22. 17O 3QMAS NMR spectrum for a borosilicate -100 -50 0 50 100 B-O-B MAS dimension (ppm) Si-O-Si Si-O-B -25 -50 -75 -100 Isotropic dimension (ppm)

  23. 11B-{27Al} CP-HETCOR NMR spectrum BO4 BO3 -80 0 80 AlO6 AlO5 AlO4 40 20 0 -20 ppm

  24. Applications • Polymers • Glasses • Porous materials • Liquid crystals

  25. Porous materials Zeolite A Sodalite

  26. Porous materials Faujasite Cancrinite

  27. Porous materials Zeolite ZK-5 Zeolite Rho

  28. Zeolite framework projections AlPO4-5 along [001] AlPO4-11 along [100] VPI-5 along [001]

  29. High-resolution 29Si MASNMR spectra of syntheticNa-X and Na-Y zeolites 2 (Si/Al) = 1.03 1.19 1.35 1.59 1.67 1.87 3 2.00 2.35 2.56 2.61 2.75 1 4 0 4 Si(nAl) lines n = 3 2 1 0 -80 -90 -100 -110 -80 -90 -100 -110

  30. Possible ordering schemes for zeolite Y Si/Al = 1.67 Intensity ratios: Si(4Al):Si(3Al):Si(2Al):Si(1Al):Si(0Al) Si Al

  31. 3 29Si MAS NMR spectrum of highly siliceous mordenite 2 1 Intensities -110 -112 -114 -116 -118 ppm

  32. Mordenite structure along [001] T-site No. per unit cell Neighbouring sites Mean T-O-T bond angle T1 16 T1, T1, T2, T3 150.4° T2 16 T1, T2, T2, T4 158.1° T3 8 T1, T1, T3, T4 153.9° T4 8 T2, T2, T3, T4 152.3°

  33. Mordenite structure along [001] T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks T-site No. per unit cell Neighbouring sites Mean T-O-T bond angle T1 16 T1, T1, T2, T3 150.4° T2 16 T1, T2, T2, T4 158.1° T3 8 T1, T1, T3, T4 153.9° T4 8 T2, T2, T3, T4 152.3°

  34. 29Si MAS NMR spectrum of highly siliceous mordenite T2 + T4 T1 T3 J-scaled COSY spectrum T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks -110 -112 -114 -116 -118 ppm

  35. 29Si MAS NMR spectra of ultrastabilized and hydrothermally realuminated zeolites 2 1 Si/Al = 2.56 3 0 4.96 4.26 7.98 2.44 2.70 2.09 -80 -90 -100 -110 -120 -90 -100 -110 -120 -90 -100 -110 ppm

  36. Chemical reactions in zeolites 1000 °C {C} + H2O CO + H2 (water gas reaction)

  37. Chemical reactions in zeolites 1000 °C {C} + H2O CO + H2 (water gas reaction) ……. + x O2(n-x) CO + n H2 + x CO2 (water gas shift)

  38. Chemical reactions in zeolites 1000 °C {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2CH3OH (conversion of synthesis gas) catalyst

  39. Chemical reactions in zeolites 1000 °C {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 catalyst Zeolites 150 °C

  40. Chemical reactions in zeolites 1000 °C {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 …….. complex mixture of hydrocarbons catalyst Zeolites 150 °C Zeolites 300 °C

  41. Chemical reactions in zeolites 1000 °C {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 …….. complex mixture of hydrocarbons catalyst Zeolites 150 °C Zeolites 300 °C

  42. 13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins 0 -5 -10 -15 40 30 20 10 0 -10 ppm

  43. 13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins scalar coupling 0 -5 -10 -15 1JCH = 125 Hz a quintet with ratio 1:4:6:4:1 is expected for methane 40 30 20 10 0 -10 ppm

  44. Heteronuclear 2D J-resolved 13C MAS NMR spectrum 300 200 100 0 Hz -100 -200 -300 26 24 22 18 17 16 15 -11 -12 ppm

  45. 13C NMR spin diffusion spectrum of products of methanol conversion over zeolite ZSM-5 25 20 15 10 ppm

  46. 13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins Methane Ethane Propane Cyclopropane n-Butane Isobutane (n-Pentane) Isopentane n-Hexane n-Heptane 0 -5 -10 -15 40 30 20 10 0 -10 ppm

  47. Methylated aromatic products * CO * * * * 190 185 180 140 135 130 125 ppm

  48. 129Xe NMR as a sensitive tool for materials 0: reference S: surface collisions Xe: Xe-Xe collisions E: electric field effect M: paramagnetic species

  49. 129Xe as a sensitive probe for various zeolites ZK4 ZSM-5 1021 NaY ZSM-11 K - L Xe atoms /g omega 1020 60 80 100 120 140 ppm

  50. Applications • Polymers • Glasses • Porous materials • Liquid crystals

More Related