1 / 8

椭圆的参数方程

椭圆的参数方程. 江门市杜阮华侨中学 杨清孟. y. A. B. M. x. O. N. 问题、 如下图,以原点为圆心,分别以 a , b ( a > b > 0 )为半径作两个圆,点 B 是大圆半径 OA 与小圆的交点,过点 A 作 AN⊥ox ,垂足为 N ,过点 B 作 BM⊥AN ,垂足为 M ,求当半径 OA 绕点 O 旋转时点 M 的轨迹参数方程. 分析:. 点 M 的横坐标与点 A 的横坐标相同 ,. 点 M 的纵坐标与点 B 的纵坐标相同. 而 A 、 B 的坐标可以通过 引进参数建立联系. 设∠ XOA=φ. y. A. B. M.

alcina
Download Presentation

椭圆的参数方程

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 椭圆的参数方程 江门市杜阮华侨中学 杨清孟

  2. y A B M x O N 问题、如下图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时点M的轨迹参数方程. 分析: 点M的横坐标与点A的横坐标相同, 点M的纵坐标与点B的纵坐标相同. 而A、B的坐标可以通过 引进参数建立联系. 设∠XOA=φ

  3. y A B M x O N 问题、如下图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时点M的轨迹参数方程. 解: 设∠XOA=φ, M(x, y), 则 A: (acosφ, a sinφ), B: (bcosφ, bsinφ), 由已知: 即为点M的轨迹参数方程. 消去参数得: 即为点M的轨迹普通方程.

  4. 1 .参数方程 是椭圆的参 数方程. 另外, 称为离心角,规定参数 的取值范围是 2 .在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长. a>b

  5. 例 已知椭圆 有一内接矩形ABCD, 求矩形ABCD的最大面积。 Y y D A B2 X A1 A2 O X F2 F1 B C B1

  6. (2) (1) (3) (4) 【练习1】把下列普通方程化为参数方程. 把下列参数方程化为普通方程

  7. ( , 0) 练习2:已知椭圆的参数方程为 ( 是参数) ,则此椭圆的长轴长为( ),短轴长为( ),焦点坐标是( ),离心率是( )。 4 2

More Related