80 likes | 276 Views
椭圆的参数方程. 江门市杜阮华侨中学 杨清孟. y. A. B. M. x. O. N. 问题、 如下图,以原点为圆心,分别以 a , b ( a > b > 0 )为半径作两个圆,点 B 是大圆半径 OA 与小圆的交点,过点 A 作 AN⊥ox ,垂足为 N ,过点 B 作 BM⊥AN ,垂足为 M ,求当半径 OA 绕点 O 旋转时点 M 的轨迹参数方程. 分析:. 点 M 的横坐标与点 A 的横坐标相同 ,. 点 M 的纵坐标与点 B 的纵坐标相同. 而 A 、 B 的坐标可以通过 引进参数建立联系. 设∠ XOA=φ. y. A. B. M.
E N D
椭圆的参数方程 江门市杜阮华侨中学 杨清孟
y A B M x O N 问题、如下图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时点M的轨迹参数方程. 分析: 点M的横坐标与点A的横坐标相同, 点M的纵坐标与点B的纵坐标相同. 而A、B的坐标可以通过 引进参数建立联系. 设∠XOA=φ
y A B M x O N 问题、如下图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时点M的轨迹参数方程. 解: 设∠XOA=φ, M(x, y), 则 A: (acosφ, a sinφ), B: (bcosφ, bsinφ), 由已知: 即为点M的轨迹参数方程. 消去参数得: 即为点M的轨迹普通方程.
1 .参数方程 是椭圆的参 数方程. 另外, 称为离心角,规定参数 的取值范围是 2 .在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长. a>b
例 已知椭圆 有一内接矩形ABCD, 求矩形ABCD的最大面积。 Y y D A B2 X A1 A2 O X F2 F1 B C B1
(2) (1) (3) (4) 【练习1】把下列普通方程化为参数方程. 把下列参数方程化为普通方程
( , 0) 练习2:已知椭圆的参数方程为 ( 是参数) ,则此椭圆的长轴长为( ),短轴长为( ),焦点坐标是( ),离心率是( )。 4 2