210 likes | 535 Views
TREND ANALYSIS. DEVELOPED BY KIRK ET AL. 1980. J.AM.SOC.HORT. SCI. STATISTICAL PROCEDURE TO ACCOUNT FOR SPATIAL VARIBILITY EACH PLOT IS IDENTIFIED BY ROW AND COLUMN TO FORM A GRID. TREND ANALYSIS. BACKGROUND VARIATION IS ACCOUNTED FOR BY FITTING A POLYNOMIAL SURFACE MODEL ON THE GRID
E N D
TREND ANALYSIS • DEVELOPED BY KIRK ET AL. 1980. J.AM.SOC.HORT. SCI. • STATISTICAL PROCEDURE TO ACCOUNT FOR SPATIAL VARIBILITY • EACH PLOT IS IDENTIFIED BY ROW AND COLUMN TO FORM A GRID
TREND ANALYSIS • BACKGROUND VARIATION IS ACCOUNTED FOR BY FITTING A POLYNOMIAL SURFACE MODEL ON THE GRID • RESIDUAL VALUES FOR EACH PLOT IS CALCULATED BY SUBTRACTING THE ENTRY MEAN FROM THE PLOT VALUE • THE PROGRAM EVALUATES POSSIBLE RESPONSE SURFACE MODELS
TREND ANALYSIS • THE MODEL APPROXIMATES THE PATTERN OF RESIDUAL VALUES IN THE EXPERIMENT • FROM THE POSSIBLE MODELS, ‘F’ TESTS ARE USED TO SELECT THE MODEL DESIRED • THE NUMBER OF TERMS IN THE MODEL IS RESTRICTED AS WELL AS THE SIGNIFICANCE LEVEL OF THE ‘F’ TEST
TREND ANALYSIS • ADJUSTED ENTRY MEANS ARE COMPUTED BASED ON THE SURFACE MODEL, I.E. PLOT VALUES IDENTIFIED WITH POSITIVE RESIDUAL VALUES ARE ADJUSTED DOWNWARD AND VICE VERSA • THE ADJUSTED ENTRY SUM OF SQUARES IS USED IN THE ANOVA • THE SS ASSOCIATED WITH THE SURFACE MODEL IS SUBTRACTED FROM THE TOTAL IN LIEU OF REPS OR BLOCKS
NECESSARY DATA INPUTS • SAME AS WITH RCBD PLUS ROW NUMBER AND COLUMN NUMBER BUT NO REP NUMBER • YOU CANNOT HAVE MISSING VALUES
RELATIVE EFFICIENCY • FLUE-CURED TOBACCO = 97 TO 161% • COTTON = 126 TO 130 % • CORN =110 TO 147%
REQUIREMENTS FOR THE PC • 64 BIT COMPUTER
Trend Analysis -- 2011 Soybean Data ------------------------------------------------ test=C Maturity=5 sub_mat=E Loc=1 ------------------------------------------------- ANALYSIS OF VARIANCE FOR THE DEPENDENT VARIABLE Yield SOURCE DF SUM OF SQUARES MEAN SQUARES CORR. TOTAL 99 10468.867931 Entry 19 7070.562003 372.13484229 RESIDUAL 80 3398.305928 42.47882409 F I T T I N G O F T H E R E S P O N S E S U R F A C E M O D E L NUMBER TERMS TERMS IN THE RESPONSE SURFACE MODEL RESULTING IN MINIMUM ERROR S S EMS R SQUARE 1 T1 33.90620951 .2118 2 R1 T1 30.83918790 .2922 3 R1 T1 R1T1 30.48219817 .3093 4 R1 T1 T2 R1T1 30.42357068 .3196 5 R1 R2 R3 R4 T1 28.33027323 .3748 6 R1 R2 R3 R4 T1 R3T1 27.83401422 .3939 7 R1 R2 R3 R4 R5 T1 R5T1 26.80253232 .4242 8 R1 R2 R3 R4 T1 T2 T3 R3T3 26.09494714 .4471
S E L E C T I O N O F T H E R E S P O N S E S U R F A C E M O D E L NUMBER ERROR ERROR MALLOWS REGRESSION REDUCTION TERMS DF SUM OF SQUARES MEAN SQUARES C(P) SUM OF SQUARES SUM OF SQUARES F VALUE PROB>F 1 79 2678.59055090 33.90620951 24.6479 719.71537668 719.71537668 27.581 .0001 2 78 2405.45665606 30.83918790 16.1809 992.84927153 273.13389484 10.467 .0018 3 77 2347.12925880 30.48219817 15.9457 1051.17666879 58.32739726 2.235 .1393 4 76 2312.19137147 30.42357068 16.6069 1086.11455611 34.93788732 1.339 .2511 5 75 2124.77049222 28.33027323 11.4246 1273.53543537 187.42087926 7.182 .0091 6 74 2059.71705251 27.83401422 10.9316 1338.58887508 65.05343971 2.493 .1187 7 73 1956.58485909 26.80253232 8.9795 1441.72106849 103.13219341 3.952 .0506 8 72 1878.83619410 26.09494714 8.0000 1519.46973348 77.74866499 2.979 .0886
SELECTED RESPONSE SURFACE MODEL SOURCE REGRESSION COEFF. SEQUENTIAL SS F VALUE PROB>F PARTIAL SS F VALUE PROB>F R1 .29137414 273.13389484 9.641 .0027 259.85848935 9.172 .0034 R2 -.00907770 6.11188122 .216 .6437 5.85148544 .207 .6508 R3 -.00030772 .06952623 .002 .9606 .16961231 .006 .9385 R4 -.00241547 274.50475639 9.689 .0026 274.50475639 9.689 .0026 T1 1.89699153 719.71537668 25.404 .0001 719.71537668 25.404 .0001
ANALYSIS OF VARIANCE FOR THE DEPENDENT VARIABLE Yield SOURCE DF SUM OF SQUARES MEAN SQUARES F VALUE PROB>F CORRECTED TOTAL 99 10468.8679310 Entry 19 7070.5620035 372.134842287 13.136 .0001 Entry (ADJUSTED) 19 7125.8865777 375.046661985 13.238 .0001 RESPONSE SURFACE 5 1273.5354354 254.707087073 8.991 .0001 ERROR 75 2124.7704922 28.330273230
Trend Analysis -- 2011 Soybean Data ------------------------------------------------ test=C Maturity=5 sub_mat=E Loc=1 ------------------------------------------------- Entry MEANS FOR THE DEPENDENT VARIABLE Yield STANDARD ERROR Entry N MEANS ADJUSTED MEANS ADJUSTED MEANS 1 5 33.62148837 33.19709438 2.45950163 2 5 30.32825860 30.88234073 2.43008296 3 5 32.07842791 31.35763996 2.39875927 4 5 37.11608372 36.52581785 2.42301395 5 5 32.16516279 32.71897014 2.41574955 6 5 27.78083163 28.54246979 2.41569698 7 5 34.57791628 34.11451191 2.39606000 8 5 25.56334884 24.82098523 2.42005300 9 5 34.62925395 33.89677237 2.43625464 10 5 37.34253209 36.80177860 2.38884488 11 5 50.35323349 50.42916210 2.40164258 12 5 29.26856930 28.67307975 2.41150717 13 5 51.83604837 53.31078266 2.43422675 14 5 38.27329116 38.96011661 2.42292970 15 5 41.28029581 41.95464001 2.40185216 16 5 25.21746419 24.84757882 2.39570485 17 5 49.50827163 48.93608695 2.40456920 18 5 48.69941023 48.55953267 2.55227254 19 5 49.84782698 49.52107078 2.40360897 20 5 40.59133953 42.02862359 2.41295470
MULTIPLE COMPARISONS OF THE ADJUSTED MEANS USING THE BAYESIAN K-RATIO T TEST Entry N ADJUSTED MEANS 8 5 24.82098523 | 16 5 24.84757882 | | 6 5 28.54246979 | | | 12 5 28.67307975 | | | | 2 5 30.88234073 | | | 3 5 31.35763996 | | | | 5 5 32.71897014 | | | | | 1 5 33.19709438 | | | | | | 9 5 33.89677237 | | | | | | | 7 5 34.11451191 | | | | | | 4 5 36.52581785 | | | | | | 10 5 36.80177860 | | | | | | 14 5 38.96011661 | | | | | 15 5 41.95464001 | | | 20 5 42.02862359 | | | 18 5 48.55953267 | 17 5 48.93608695 | | 19 5 49.52107078 | | | 11 5 50.42916210 | | | | 13 5 53.31078266 | | | | BAYESIAN K - RATIO T VALUE USED: 1.576
CONCLUSIONS • NEED 64 BIT COMPUTER • PROVEN SPATIAL ANALYSIS WITH REMARKABLE EFFICIENCIES • NECESSARY TO HAVE NO MISSING PLOTS • NEEDS AT LEAST 80 PLOTS TO BE EFFICIENT