210 likes | 388 Views
Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions. Gerjan Hagelaar C entre de Physique des Plasmas et de leurs Applications de Toulouse Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France. Introduction.
E N D
Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions Gerjan Hagelaar Centre de Physique des Plasmas et de leurs Applications de Toulouse Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
Introduction Magnetic fields used in low-pressure discharges: • magnetron • electron-cyclotron resonance (ECR) • helicon • Hall-effect thruster • etc… (magnetized discharges) Magnetic field complex physics Insight from hybrid models
Plan • Elementary physics • Hybrid models • Limits of hybrid models • Illustrative model results: - ECR reactor - Hall thruster - Galathea trap
Elementary effects of the magnetic field • Cyclotron motion confinement • Perpendicular electric field EB drift • Collisions destroy magnetic confinement ion electron electron EB drift (azimuthal) cyclotron frequency Larmor radius collision E B B
Typical conditions plasma pressure 0.1 – 10 mTorr plasma density 1015 – 1019 m-3 magnetic field 0.001 – 0.1 T electron temperature 2 – 20 eV lengths Debye length 10-5 – 10-3 m electron Larmor radius 10-4 – 0.01 m ion Larmor radius 0.02 – 5 m mean free path 0.01 – 1 m plasma size 0.02 – 1 m frequencies electron cyclotron 3108 – 21010 s-1 electron collision 3105 –108 s-1 Long mean free path Electrons are magnetized collisions + ionization Ions have only few collisions Magnetic field not influenced by plasma
Modelling Low pressure particle-in-cell (PIC): • electron and ion trajectories • space charge electric fields Magnetized PIC models cumbersome: • high plasma density small time steps, small cells • important 2D effects • interest in simpler faster models • describe electrons by collisional fluid equations K. A. Ashtiani et al, J. Appl. Phys. 78 (4), 2270-2278 (1995). S. Kondo and K. Nanbu, J. Phys. D: Appl. Phys. 32, 1142-1152 (1999). J. C. Adam et al, Phys. Plasmas 11 (1), 295-305 (2004).
Electron fluid equations • Electron conservation • Anisotropic flux • Mobility tensor (classical theory) ionisation source flux drift diffusion collision frequency cyclotron frequency perpendicular mobility << parallel mobility
Hybrid models Non-quasineutral scheme: • ion particles ni • electron fluid ne • Poisson Quasineutral scheme: • ion particles ni = ne • electron fluid no plasma oscillations • large time steps no sheaths large cells (Ohm’s law) R. K. Porteous et al, Plasma Sources Sci. Technol. 3, 25-39 (1994). J. M. Fife, Ph. D. thesis, MIT, 1998. G. J. M. Hagelaaret al, J. Appl. Phys. 91 (9), 5592-5598 (2002).
Limits of the electron equations • Anomalous transport B empirical parameters • Non-local effects //B:inertia, mirror confinement But: flux //B limited by boundaries classical mobility ? Bohm mobility drift diffusion (Boltzmann) potential = constant + diffusion term Magnetic field lines approximately equipotential
insulator wall h uniform B cathodec anode a l insulator wall Numerical problem Extreme anisotropy numerical errors tend to destroy the magnetic confinement Special precautions necessary (flux scheme) electron flux in the middle of the channel [cyclotron frequency] / [collision frequency]
Examples of model results Non-quasineutral hybrid model sheaths resolved Fixed: • Gaussian ionisation source • uniform electron temperature (diffusion) • electron collision frequency Calculated: • electron/ion densities • electron/ion fluxes, currents • self-consistent potential
Example I : Diffusion in ECR reactor process chamber source chamber
ECR reactor with dielectric wall no (pre)sheath !! Magnetic confinement reduces loss to source wall
ECR reactor with grounded wall normal (pre)sheath current loop Magnetic confinement shortcircuited by walls A. Simon, Phys. Rev. 98 (2), 317-318 (1955).
Hall-effect thruster cathode sheath negligible ion beam trapped low-energy ions acceleration region Equipotential lines magnetic field lines Applied voltage penetrates in plasma bulk
Example III : semi-Galathea trap A. I. Morozov and V. V. Savel’ev, Physics – Uspekhi 41 (11), 1049-1089 (1998).
Semi-Galathea trap 70 % of ions guided to exit negative plasma potential ! (inverted presheath) electron current from emissive cathode to walls Potential well reduces ion wall loss and guides ions to exit
Semi-Galathea trap without emission cathode sheath Potential well disappears because of cathode sheath
Conclusions • In magnetized discharges, charged particle transport and space charge fields are different • This can be studied in 2D by hybrid models • No predictive simulations, but insight in physical principles