160 likes | 348 Views
Laser spectroscopy experiments on fission products. Introduction : hyperfine interaction. Principle : use the electronic cloud to probe the nuclear electromagnetic properties.
E N D
Laser spectroscopy experiments on fission products Introduction : hyperfine interaction Principle : use the electronic cloud to probe the nuclear electromagnetic properties Measured quantities : spin I, magnetic moment mI, spectroscopic quadrupole moment Qs, evolution of the mean square charge radius d<r2>c Physics case (part of) Physics of medium mass nuclei produced by fission Laser spectroscopy systems Resonant Ionisation spectroscopy (RIS) : COMPLIS Collinear Spectroscopy after beam cooling : future laser system at ALTO
Hyperfine interaction l=300 nm 1 2 n106 GHz 4GHz hn04eV 191Ir 3 4 5 n B A Nuclear structure information Measurement Two hyperfine interaction energy terms mI YN A B QS Axial symmetry 3K2- Nuclear quantities QS Q0 b2
Isotope shift • Change of nuclear mass between isotopes: MASSSHIFT • Change of the nuclear charge • density between isotopes : VOLUME SHIFT Measurement Nuclear quantity DniAA’ Nuclear droplet model
Nuclear regions explored at ALTO 238U 30 keV Expected intensities = SPIRAL2 /100 N=82 1+ 50 MeV N=50 target source Sn Z=50 Fission Ni Z=28 e- g neutron rich nuclei produced by fission at ALTO (Orsay) and then at SPIRAL2 (GANIL) Doubly magic regions 78Ni and 132Sn
Ba Cs Xe Production /s/µA 5 108 – 5 109 Z=50 Sn 108 – 5 108 In 5 107 – 108 Cd 107 – 5 107 5 106 – 107 N=82 106 – 5 106 5 105 – 106 105 – 5 105 N=50 104 – 105 Stable Sr Rb Kr Z=28 Expected yields at ALTO Extrapolations from measured yields at PARRNe Represented yields104pps minimum yield for the laser set-up we envisage
A “sample” of the physics motivations Z=56 Ba Rb (Z=37) C. Thibault Nucl. Phys. A367, 1 (1981) mid-shell effect Z=54 Xe Sr (Z=38) F. Buchinger Phys. Rev. C 41, 2883 (1990) b=0.4 b=0.3 b=0.2 d<r2>c b=0.1 b=0 Shape transition Sherical shell gap N=82 N=60 N=50 The evolution of the charge distribution is very sensitive to the structural changes • The <r2>cvariations reflect both the change in volume and departures from spherical symmetry, the origins of which can be : • rigid deformation (rotor behaviour) • Zero point quadrupolar vibrations (or more generally dynamical effects) • Core polarization <r2>c very rapidly when N <r2>c when N
Illustration of the core polarization effect Origin : monopole part of the neutron-proton interaction importance of the radial part of the orbital wave functions 2d5/2 50 n=2 n=3 n=4 1g9/2 n 40 2p1/2 38 N<50 2p3/2 1f5/2 p 2d5/2 50 1g9/2 n 40 2p1/2 38 N>50 2p3/2 1f5/2 p
Illustration of the “dynamical” effects Recent results from the COMPLIS measurements on tin F. Le Blanc et al. to be published in Phys Lett B Theoretical Data NL3 : G.A Lalazissis et al., At. Data and Nucl. Data Tables 71 (1999)1. Gogny : M. Girod and S. Péru, Private comm. (2001) SLy4 and SLy7 : P. Bonche and J. Meyer, Private comm. (2002).
Resonant ionization mass spectroscopy system : COMPLIS Ionization Target Excitation Excitation Desorption Magnet Emergent beam at 59 kV Incident beam at 60 kV Ion detector (MCP) INJECTOR Magnet Ion source (stables)
Characteristics of the COMPLIS set-up resolution total efficiency 10-5-10-6 YAG pumping 10 Hz Ionization continuum desorbed atoms Ionization zone 1 atome/100 YAG beam 646,58 nm (rouge) Dye laser lambda-physik graphite 2 323,29 nm (UV) 2 351,7 nm (UV) ZOOM tunable monomode dye laser « compulsé » Ground state First stage beam Ionization beams YAG pumping 10 Hz a Ionization volume
Principle of the fast beam collinear laser spectroscopy dv dnD=n0 c n n Laser source fixed frequency Velocity v n Velocity v+dv Frequency in the rest frame of the atoms The kinematic compression of the velocity distribution results in a reduction of the residual doppler width dE=mv dv Energy spread velocity spread Residual doppler width The hyperfine structure is scanned by a beam energy scan with U=10-4, ~50MHz
COLLINEAR laser spectroscopy system Ion source Photomultiplier electrons Mass separator Ellipsoïdal mirror Charge-exchange cell Separated beam Retardation system RFQ cooler-buncher High resolution laser
Efficiency • . Transport : 70 % • . Neutralization : 80 % • . Feeding probability of the selected metastable state : 30% • . Spatial overlap between laser beam and ion beam : 5 10- 3 • . Resonance efficiency : 100% • . De-excitation efficiency : 50% • . Collection efficiency : : 5 % • . Detection efficiency : 90 % • TOTAL : ~10-5 but : signal/noise ratio strongly increased by the use of the cooler buncher
A few details on the cooler… grounded Buffer gas Ucavity UHV UHV Pulsed cavity transfert Ions Ions Ekin=e.( UHV-Ucavity ) Ions Ucavity UHV trapping Longitudinal potential shape ejection F. Herfurth NIM A 469 (2001) 254 (ISOLTRAP) Ion deceleration 10eV
First measurements at ALTO 206 nm 547.7 nm 303.9 nm 422.7 nm • Ag (Z=47) : from A=111 to A=123 (or further from the stability line depending on the effective productions) complete the measurements on this isotopic chain on the right side of the valley of stability • Transition : Z.Phys. A274 (1975)79. • Ge (Z=32) : from A=77 to A=83 N=50 crossing • then, les Br, As and Ga towards Ni, Sb, I, ... N=50
Miroir ellipsoïdal Lentilles d’accélération ralentissement Cellule à échange de charge Laser haute résolution Coût et main d’œuvre F. Le Blanc IPN • Ligne de faisceau, éléments d’optique ionique et pompage : 50 k€ • Cellule à échange de charge : LAC ou Mainz • Détection : 10 k€ • Lasers et optique : 200 k€ • Acquisition et commande : 40 k€ • Total : 300 k€ Durée du montage et de la mise au point : 2 ans à 2 chercheurs plein temps plus aide service technique (construire l’acquisition et réaliser la ligne de faisceau)