1 / 8

Maxima and minima of functions

Maxima and minima of functions. Lesson 2.2. Definitions. Global extrema : If f(c) ≥ f(x) for all x in the domain of f, f(c) is the global maximum value of f. If f(c)≤ f(x) for all x in the domain of f, f(c) is the global minimum value of f.

alder
Download Presentation

Maxima and minima of functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Maxima and minima of functions Lesson 2.2

  2. Definitions • Global extrema: If f(c) ≥ f(x) for all x in the domain of f, f(c) is the global maximum value of f. If f(c)≤ f(x) for all x in the domain of f, f(c) is the global minimum value of f. • Local extrema: If f(c) ≥ f(x) for all x in some open interval containing c, f(c) is a local maximum value of f. If f(c)≤ f(x) for all x in some open interval containing c, f(c) is a local minimum value of f.

  3. Example 1: Y = button • Approximate the global and local maximum and minimum on each given domain for the function k defined by k(x) = -2x4 + 3x3 + 4x2 – 5x + 5 • Set of all real numbers: • -1 ≤ x ≤ 1 • x < -2

  4. k(x) = -2x4 + 3x3 + 4x2 – 5x + 5 Set of all real numbers: -no global min, local min. at x≈ .477, k(x) ≈3.747 - local/global max. at x ≈-.865, k(x) ≈9.257, - local max. at x ≈ 1.513, k(x) ≈ 6.502

  5. k(x) = -2x4 + 3x3 + 4x2 – 5x + 5 -1 ≤ x ≤ 1 -local/global min at x≈ .477, k(x) ≈3.747 -local min at endpoint x=-1, k(x) = 9 -local/global max. at x ≈-.865, k(x) ≈9.257, - local max at endpoint, x = 1, k(x) = 5

  6. k(x) = -2x4 + 3x3 + 4x2 – 5x + 5 x < -2 - there is no minimum since the function decreases without bound on the interval (-∞, -2). -There is no maximum because k(x) increases as x increases and there is no greatest value of x on this interval.

  7. Find the extrema of f(t)=2t4 +4t + 1 Over [0,∞) - local/global min: t=0, f(t) = 1 - No local/global max. Over (-3,1): -local/global min: t≈-.787, f(t) ≈ -1.381 -No local/global max.

  8. Homework Page 91 3, 5, 6, 7 10, 12, 14

More Related