280 likes | 293 Views
E.-A. Reinecke , S. Kelm, S. Struth, Ch. Granzow, U. Schwarz*. Institute for Energy Research - Safety Research and Reactor Technology (IEF-6) *Institute for Reactor Safety and Reactor Technology RWTH Aachen University. Catalytic recombiners Design studies Conclusions.
E N D
E.-A. Reinecke, S. Kelm, S. Struth, Ch. Granzow, U. Schwarz* Institute for Energy Research - Safety Research and Reactor Technology (IEF-6)*Institute for Reactor Safety and Reactor Technology RWTH Aachen University • Catalytic recombiners • Design studies • Conclusions Design of catalytic recombiners for safe removal of hydrogenfrom flammable gas mixtures 2nd International Conference on Hydrogen SafetySan Sebastian, September 11-13, 2007 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Severe Accident Research NETwork (NoE) (EURATOM) Safety of Hydrogen as an Energy Carrier (NoE) Research on hydrogen safety at FZJ • Focus: H2 removal by means of catalytic recombiners (PAR) • Hydrogen laboratory with 3 REKO facilities experimental PAR studies • Service of Dpts. Analytical Chemistry (ZCH) and Technology (ZAT) catalyst development • Simulation of recombiner behaviour code development Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Why recombiners ? • Device removing hydrogen from oxygencontaining atmosphere (e.g. air) in thepresence of a catalyst (e.g. Pt, Pd) hydrogen sink • Today application in areas where venting is not sufficient/possible- NPP containment (H2 formation during core melt accident)- BWR cooling circuit (H2 formation in operation)- submarines (H2 released from the propulsion system)- batteries (‚HydroCaps‘) specific applications • Future use of hydrogen in ‚any‘ surrounding may lead to anextended area of application for recombiners Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
200 model: conversion rate related to theinlet cross-section FR90-1500 FR90-320 150 source: Siemens PAR information FR90-960 100 H2 conversion rate in n-m³/(m²h) catalystsheets model: FR90-320 50 Siemens design source: BMC experiments 0 0 3 6 9 H2 concentration in vol.% Catalytic recombiners in NPP • Severe accident in LWR H2 release • Formation of flammable H2/air mixture inside containment • Installation of catalytic recombiners Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
PAR principle outlet air + H2O chimney buoyancy effect inlet H2 + air catalyst H2 + ½ O2 H2O + heat outlet air + H2O catalyst H2 + ½ O2 H2O + heat inlet H2 + air natural convection application forced flow application Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Catalyst temperatures - major drawback 800 700 600 conventional ignition temperature 500 plate-type catalyst 400 max. catalyst temperature / °C mesh-type catalyst 300 200 100 0 0 1 2 3 4 5 6 inlet hydrogen concentration / vol.% Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Challenge • Passive system temperature control • no direct influence on the process parameters(flow rate, inlet mixture composition, active temperature control) • no active cooling • Further demands • resistance against catalyst poisoning/deactivation • environmental influences depending strongly on application self-regulating system Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Design studies • Catalytic recombiners • Design studies • Conclusions Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Self-regulating system • General approach • local limitation of the catalytic reaction • passive cooling of the catalyst elements catalyst design, support design geometrical design, cooling elements Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Self-regulating system • General approach • local limitation of the catalytic reaction • passive cooling of the catalyst elements • Basic element types (catalyst - support) • high performance catalyst - large surface support • adapted performance catalyst - large surface support • high performance catalyst - passive cooling support catalyst design, support design geometrical design, cooling elements HPC-LS APC-LS HPC-PC Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Experimental Facilities • Experimental studies on the operational behaviour under well defined conditions Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Experimental Facilities Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Experimental Facilities • REKO-1 • Experimental studies on reaction kinetics in catalyst elements • Substrates applied- steel meshes- ceramic bodies Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
REKO-1 test facility gas analysis pyrometer thermocouples catalyst samples inlet Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Realisation of large surface support Pt - washcoat • Large surface support • high performance catalyst • adapted performance catalyst Pt - electroplated Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
APC-LS Performance of HPC and APC 1200 1000 HPC-LS 800 catalyst temperature / °C 600 400 200 1.0 m/s 0 0 5 10 15 20 25 H2 concentration / vol.% Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Realisation of APC-LS - new approach Pt-nano-particles / metal oxide matrix • APC-LS • adapted performance catalyst • large surface support Ceramic cell support Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Performance of new HPC-LS approach 500 100 catalyst temperature 450 90 efficiency 400 80 catalyst temperature / °C efficiency / % 350 70 300 60 flow rate: 0.25 m/s support: plate-type catalyst: n-Pt MO 250 50 0 2 4 6 8 10 H concentration / vol.% 2 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Realisation of passive cooling • Passive cooling support • approach: passive cooling by means of heatpipes Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Performance of HPC-PC 600 • Passive cooling support • approach: passive cooling by means of heatpipes HPC 500 400 catalyst temperature / °C 300 HPC-PC 200 100 diameter 8 mm 0,5 m/s 0 0 2 4 6 8 10 12 hydrogen concentration / vol.% Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Basic features of catalyst designs type catalyst support start behaviour efficiency/ element thermalbehaviour HPC-LS high performance large surface ~ 2 vol.% ~ 70 % unlimitedheating up APC-LS adapted performance large surface < 1 vol.% > 90 % limited to~ 450°C HPC-PC high performance passive cooling ~ 2 vol.% ~ 10 % limited to~ 200°C Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Basic features of catalyst designs type catalyst support start behaviour efficiency/ element thermalbehaviour HPC-LS high performance large surface ~ 2 vol.% ~ 70 % unlimitedheating up APC-LS adapted performance large surface < 1 vol.% > 90 % limited to~ 450°C HPC-PC high performance passive cooling ~ 2 vol.% ~ 10 % limited to~ 200°C • Modular set-up of different elements - examples • medium H2 amount - high acceptance level for PAR temperature • medium H2 amount - low acceptance level for PAR temperature • high H2 amount - low acceptance level for PAR temperature Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Medium inlet H2 concentration high outlet temperature HPC 0% H2in air 5% H2in air 10% 5% hydrogen concentration 0% Tmax system temperature T0 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Medium inlet H2 inlet concentration low outlet temperature PC HPC 0% H2in air 5% H2in air 10% 5% hydrogen concentration 0% Tmax system temperature T0 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
High inlet H2 concentration low outlet temperature PC APC HPC 0% H2in air 10% H2in air 10% 5% hydrogen concentration 0% Tmax system temperature T0 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Conclusions • Catalytic recombiners • Design Studies • Conclusions Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
Conclusions • PAR can reduce the explosion risk in future hydrogen applications • Challenge: high efficiency at system temperatures below the ignition limit • Approach:- adaptation of the catalyst activity- passive cooling elements • Different types of catalyst elements have been identified and investigated • Modular set-up in order to adapt the PAR operation behaviour to the boundary conditions of the application Forschungszentrum Jülich in der Helmholtz-Gemeinschaft
The end THANK YOU FOR YOUR ATTENTION ! Forschungszentrum Jülich in der Helmholtz-Gemeinschaft