1 / 36

Attivita’ sul microvertice a Torino

Attivita’ sul microvertice a Torino. Daniela Calvo. Commissione scientifica 3, Genova 21 settembre 2009. Micro-Vertex-Detector requirements. Good spatial resolution in r-phi Momentum measurement of pions from D* decays Good spatial resolution specially in z Vertexing, D-tagging

alec
Download Presentation

Attivita’ sul microvertice a Torino

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Attivita’ sul microvertice a Torino Daniela Calvo Commissione scientifica 3, Genova 21 settembre 2009

  2. Micro-Vertex-Detector requirements • Good spatial resolution in r-phi • Momentum measurement of • pions from D* decays • Good spatial resolution specially in z • Vertexing, D-tagging • Good time resolution • rms 6 ns (at 50 MHz clock) • with 2·107 ann/s • Triggerless readout • Energy loss measurement • dE/dx for PID • Low material budget • low momentum of particles • (from some hundreds of MeV/c) • (<1% X0 for each layer) • Radiation hardness (~4·1013 n 1MeV eq /cm2 ) • (half year data taking, 15 GeV/c antip-p) • Different radiation load

  3. By G. Giraudo 40 cm By G. Giraudo 30 cm • Custom Pixel Detector: • 100 mm x 100 mm pixel sizes; • ~ 1000 FE readout chip (114x110 pixels); • continuous data transmission without trigger • maximum event rate per cm2: • ~ 12.3 MHz for pbar-Au at 15 GeV/c • max. chip data rate : ~ 0.8 Gb/s (40 bit/pixel) • energy loss measurement: time over threshold; • dynamic range: 100 fC Micro Vertex Detector 4 barrels Inner layers: hybrid pixels Outer layers: double sided strips and 6 forward disks 4 disks: hybrid pixels 2 disks: pixel and strips mixed MVD layout

  4. Overview • Status of the activities for the pixel detector in Torino • Assembly layout • Electronics and cables • Mechanics and cooling

  5. THIN PIXEL SENSORS (< 150 mm) realized with EPITAXIAL SILICON material (suggested by Boscardin-FBK) (At LHC: thickness of 200 mm; at RD50 diodes with epitaxial material ) The thinning starts from this side, reducing the substrate to tens of mm. silicon Cz substrate epitaxial silicon layer Several processes for defining geometry and for obtaining pixel sensors are made on this side Bump bonding readout chip Carbon foam support to improve power dissipation r = 3 ÷ 4 KW·cm d = 25 ÷150 mm Carbon fiber mechanical support r = 0.01÷ 0.02 W·cm ASIC developed by the 130 nm CMOS technology with triggerless readout. Up to now the readout is in 250 nm CMOS technology (see LHC experiment with trigger ) d = some hundreds of mm Cooling system Standard hybrid technology

  6. Assembly layout

  7. Assembly scheme 2-chip module Power cable Data cable Controller chip 0805 bias filter capacitor 0603 supply filter capacitors Sensor ToPiX readout chips Multilayer bus structure By R. wheadon

  8. Layout of forward disks By R. wheadon Possibility of daisy-chaining controllers to save on cables (where data rates allow) Controller chips serve two or three ToPiX readout chips For outer layer of barrel would need to daisy-chain two 6-chip modules (power and controller chips) to keep cables out of active region Keeping cables out of active region means that some modules may require two designs according to which end the cables have to be connected

  9. Electronics and cables

  10. Upgrade of ToPix • Technology LM -> DM (the HEP mainstream) • LM: 6 (thin) + 2 (thick) metal layers • DM: 3 (thin) + 2 (thick) + 3 (RF) metal layer • RF layer shows lower resistivity and helps power routing • RF layer gives more precise capacitance • shared bus among adjacent columns 100 mm 25 mm

  11. Upgrade of ToPix • Clock from 50 MHz to 160 MHz • time stamp bin: ~6ns • new columns and receivers to be redesigned • new simulations • SEU protection: DICE cells -> triple redundance? • twice size increase in the digital part of the chip -> rescaling of the analog part

  12. 50 MHz 160 MHz Upgrade of the analog part of ToPix - I Adaptation for the clock @ 160MHz In order to keep the same clock_cylces to injected_charge ratio as ToPix2 (clock@50MHz), the discharging current value has to be proportionally increased from 5 nA to 16 nA. Simulation result of analog output signal with the 2 different clock values

  13. Filter Differential stage Compensation current ToT (ms) Leakagecurrent (nA) Upgrade of the analog part of ToPix - II Compact leakage compensation stage Layout compatible with the DM process Baseline variation of 0.6mV when the leakage current increases from 10nA to 100nA. (~2mV) ToT variation due to the leakage current Simulation: Qin = 80fC dToT/dIleak=-1.53ns/nA

  14. Results from radiation damage test of epi-diodes: the radiation damage constant Equivalent fluence values on the diodes : 5.13x1013, 1.54x1014, 5.13x1014n(1MeVeq)/cm2 corresponding to 1,3 and 10 years of PANDA lifetime The radiation damage constant is a = DJ/F =7.6(0.3)x10-17 A/cm for all diodes. Lekage current < 50 nA/pixel (100 mmx100mm size, 100 mm thick)

  15. R&D – electronics and connections Development in progress with prototypes Study of the architecture in progress ( test of high frequency cable) Readout chip Detector Module controller to counting room/daq cable Optical transceiver PCB -BUS Development in progress in other collaboration First prototypes

  16. Preliminary bus scheme By R. Wheadon

  17. Cable prototype – testing board layout 1 m differential cable Al Al Kapton (SU8) pads connectors

  18. Cable prototype –preliminary simulation By Paolo De Remigis

  19. Updates from pixel cooling Responsible: S. Coli INFN - Torino

  20. Results from test TEMPERATURE PROFILE • New prototype done • 12 resistors on 4 rows, 2 rows x side • “disk body” by POCO-HTC foam • 2 tubes embedded (øe2mm, øi1.84mm) COOLING TEST RESULTS –IR IMAGES

  21. Results from simulations POCO-HTC K (75, 245, 245) W/mK 1 W/cm2 0.3 ℓ/min water 18.5 oC FEM RESULTS INPUT DATA

  22. Cooling system for disks Disk split in two halves along the mid-plane Material for heat dissipation: foam POCO-HTC Embedded cooling capillary between the two halves All elements grued with thermal glue Problem: large glueing area -> test have to be performed

  23. Results with different material for cooling POCO FOAM Density: 0.55 g/cm3 POCO HTC Density: 09 g/cm3 Pyrolytic Graphite Density: 2.2 g/cm3 Max. Reached Temperature Poco Foam: 23°C POCO HTC: 21.7°C PG: 23.3 °C Total power: 90 W Coolant Temperature: 20°C

  24. Cooling pipe scheme 4 manifolds 41 1 manifold 21 6 tubes Ø6 6xØ4 1 manifold 61 2xØ4 6xØ4 2 manifolds 41 1 manifold 61 2xØ4 1 manifold 21 6xØ4 6xØ4 1 manifold 61 1 tube Ø6 2tubes Ø8 1 manifold 61 By B. Giraudo 1 tube Ø6 2tubes Ø8

  25. Updates from MVD Mechanics Responsible: G. Giraudo INFN - Torino

  26. >250 mm Ø 20.4 mm MVD layout

  27. Fittings for cooling pipes Ancillary parts as special fittings and curves can be common parts made from Ryton R-7-220 by injection mould 7 mm diameter 16 mm length 3 bar maximum pressure

  28. ~1,3 mm 25 mm (20 mm) Mechanics details

  29. Primary target Responsible: F. Iazzi Politecnico and INFN - Torino

  30. 13 14 2.5 3.5 3.5 2.5 152 14 14 C Al 13 15 Cu .5 6 Primary target • The target will be built through the following steps: • Step 1 • The target production starts from a disk shaped basis of Cu, (sizes:14mm diameter and 0.5 mm thickness), on which a carbon layer 20 mm thick will be deposited • Remarks: • the density of the layer is not the graphite density, but close to that: it will be measured (we will use the back-scattering technique) • the thickness of the layer can be chosen without major constraints in the range 10-40 mm and will be measured by optical techniques with good precision (better than 5%), after the deposition • Step 2 • After the deposition the carbon layer will be masked along the wires and the rest of the carbon will be wet-etched and taken away. The result will be a Cu disk having 3 wires of about 14 mm x 20 x 20 mm2 glued on. • The distances between the 3 wires could be 3.5 mm in order to avoid the beam spot overlapping on 2 wires • Step 3 (see fig. 2, where the ring is in violet, wires in black/white) • The Cu disk will be wet etched and taken away unless a ring (external diameter 14 mm, internal 12 mm), which will be previously masked. The result will be a ring with 3 C wires like a guitar. • Step 4 • The Cu ring with wires will be inserted inside a Al local frame, whose aim will be to manage the plugging of the target into the beam pipe side view frontal view

  31. Next step and conclusions

  32. Richieste capitolo Missioni Interne

  33. Richieste capitolo Missioni Estere • MISSIONI ESTERE: • Partecipazione ai 4 meetings di collaborazione con cariche ufficiali: 4 pp al Coordination Board: (Calvo, Filippi, Marcello, Iazzi) e 1 pp al Technical Board (Calvo) (i meeting generali sono programmati a 5 gg). 5gg+viaggio x 4 meetings x 5pp: 25 keuro • Partecipazione ai meetings del microvertice e della meccanica dell’esperimento con presenza del coordinatore meccanica mvd (G. Giraudo) e responsabile cooling ( S. Coli) e partecipanti al FEE tag (D. Calvo e A. Rivetti). 3gg +viaggio x 7 meeting x 3 pp: 13 keuro • settimana di lavoro a Julich per microelettronico con sviluppo logica di controllo in collaborazione. 5gg+viaggio x 1 p: 1.5 Keuro • lavoro di integrazione della meccanica e del cooling dei pixel e delle strips intorno alla beam pipe e targhetta, con il routing (1 sett. a Julich, 1 sett.a Bonn, 1 sett.al GSI). 5gg+viaggio x 2 pp x 3 incontri: 5 Keuro • contatti scientifici del responsabile locale mvd con il responsabile mvd a Bonn, per scrittura TDR. 4 gg+viaggio x5 contatti x 1p: 3 Keuro • 2 Physics meetings ( Iazzi e’ partecipante). 2gg+viaggio x 2 contatti x 1 p:1.5 keuromeetings di aggiornamento software di una settimana per 2 persone presso GSI. 5 • gg+viaggio x 1 corso x 2 pp: 3 keuro • dottorando al GSI per lavoro sulle simulazioni, circa 10 giorni: 1.5 keuro • contatto con Fraunofher Institute per bump bonding dei sensori. 2gg+viaggio x 1p: 1.5 keuro • contatti scientifici con gruppi europei (fisica e tecnologia). 3 gg+viaggio x 3 contatti x 2 pp: 3 keuro • 1 settimana di progettazione meccanica della regione ipernucleare- beam pipe a Julich. 5 gg+viaggio x1 pp: 1 Keuro • Meeting per sviluppo targhetta e beam pipe per la parte ipenucleare. 2gg+viaggio x 2 contatti x 1 p:1.5 keuro • partecipazione a due congressi internazionali per presentare i risultati del mvd: 5 gg+viaggio x 1p x 2 congressi: 3.5 keuro • test TID con X al CERN per ToPix3 ( sj alla disp. sorgente e chip). 7gg+viaggio x 1 misura x 2 pp: 2 keuro • test con protoni (circa 23 GeV) per studiare i sensori epi (sj all’ass.fascio) con spessore fino a 100 micron. 7gg+viaggio x 1 misura x 4pp, compresa installazione: 4 keuro • test a Bonn (elsa) di radiation lenght di carbon foam ( sj. ass fascio): 5gg+viaggio x 1 misura x 2 pp: 2.5 keuro • Totale M.E.: 62.5 kEuro + 8.5 kEuro sj

  34. Richieste capitolo CONSUMO sj sj

  35. Richieste capitolo INVENTARIO

  36. f.t.e. nel 2010 a Torino Calvo Daniela: 80% Busso Luigi: 30% De Mori Francesca: 20% Filippi Alessandra: 30% Marcello Simonetta:70% Kugathasan Thanushan: 100% Szymanska Katarzyna: 100% Iazzi Felice: 100% De Remigis Paolo (elettronica): 60% Mazza Giovanni (microelettronica):30% Rivetti Angelo (microelettronica):20% Wheadon Richard (sensori/elettronica):20% Coli Silvia (meccanica/tecnologia):70% Giraudo Giuseppe (meccanica/tecnologia):70% = 8fte E personale tecnico INFN-Torino Laboratorio di Elettronica e Laboratorio tecnologico/Officina meccanica

More Related