1 / 214

Weak Lensing Tomography

Weak Lensing Tomography. Sarah Bridle University College London Catania Autumn Lensing School Nov 2006. versus. 3d vs 2d (tomography) Non-Gaussian -> higher order statistics Low redshift -> dark energy. Weak Lensing Tomography. In principle (perfect zs) Hu 1999 astro-ph/9904153

alesia
Download Presentation

Weak Lensing Tomography

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Weak Lensing Tomography Sarah Bridle University College London Catania Autumn Lensing School Nov 2006

  2. versus • 3d vs 2d (tomography) • Non-Gaussian -> higher order statistics • Low redshift -> dark energy

  3. Weak Lensing Tomography • In principle (perfect zs) Hu 1999 astro-ph/9904153 • Photometric redshifts Csabai et al. astro-ph/0211080 • Effect of photometric redshift uncertainties Ma, Hu & Huterer astro-ph/0506614 • Intrinsic alignments • Shear calibration

  4. 1

  5. 1. In principle (perfect zs) • Qualitative overview • Lensing efficiency and power spectrum • Dependence on cosmology • Power spectrum uncertainties • Cosmological parameter constraints

  6. 1. In principle (perfect zs) Core reference • Hu 1999 astro-ph/9904153 See also • Refregier et al astro-ph/0304419 • Takada & Jain astro-ph/0310125

  7. Cosmic shear two point tomography  

  8. Cosmic shear two point tomography  

  9. Cosmic shear two point tomography q  

  10. Cosmic shear two point tomography q

  11. (Hu 1999)

  12. (Hu 1999)

  13. (Hu 1999) Lensing efficiency Equivalently: gi(zl) = szl1 ni(zs) Dl Dls / Ds dzs i.e. g is just the weighted Dl Dls / Ds

  14. (Hu 1999) Can you sketch g1(z) and g2(z)? gi(z) = szs1 ni(zs) Dl Dls / Ds dzs

  15. Lensing efficiency for source plane?

  16. (Hu 1999)

  17. Sensitivity in each z bin

  18. NOT

  19. (Hu 1999) Why is g for bin 2 higher? • More structure along line of sight • Distances are larger gi(zd) = szs1 ni(zs) Dd Dds / Ds dzs

  20. * *

  21. (Hu 1999) Lensing power spectrum

  22. Match up the power spectra A. (i) B. (ii) (iii) C.

  23. (Hu 1999) Lensing power spectrum Equivalently: Pii(l) = s gi(zl)2 P(l/Dl,z) dDl/Dl2 i.e. matter power spectrum at each z, weighted by square of lensing efficiency

  24. (Hu 1999)

  25. (Hu 1999) Measurement uncertainties • <2int>1/2 = rms shear (intrinsic + photon noise) • ni = number of galaxies per steradian in bin i Cosmic Variance Observational noise

  26. (Hu 1999)

  27. Sensitivity in each z bin

  28. NOT

  29. (Hu 1999)

  30. Dependence on cosmology Refregier et al SNAP3 A. m = 0.35 w=-1 B. m = 0.30 w=-0.7 ? ?

  31. Approximate dependence • Increase 8→A. P↓ B. P↑ • Increase zs →A. P↓ B. P↑ • Increase m →A. P↓ B. P↑ • Increase DE (K=0) →A. P↓ B. P↑ • Increase w →A. P↓ B. P↑ Huterer et al

  32. Effect of increasing w on P • Distance to z • A. Decreases B. Increases

  33. Fainter Accelerating m =1, no DE Decelerating (m =1, DE=0) == (m = 0.3, DE = 0.7, wDE=0) Perlmutter et al.1998 Further away

  34. w=-1 Fainter, further EdS OR w=0 Brighter, closer Perlmutter et al.1998

  35. Effect of increasing w on P • Distance to z • A. Decreases B. Increases • When decrease distance, lensing effect decreases • Dark energy dominates • A. Earlier B. Later

  36. Effect of increasing w on P • Distance to z • A. Decreases B. Increases • When decrease distance, lensing decreases • Dark energy dominates • A. Earlier B. Later • Growth of structure • A. Suppressed B. Increased • Lensing A. Increases B. Decreases • Net effects: • Partial cancellation <-> decreased sensitivity • Distance wins

  37. Approximate dependence • Increase 8→A. P↓ B. P↑ • Increase zs →A. P↓ B. P↑ • Increase m →A. P↓ B. P↑ • Increase DE (K=0) →A. P↓ B. P↑ • Increase w →A. P↓ B. P↑ Huterer et al

  38. Approximate dependence • Increase 8→A. P↓ B. P↑ • Increase zs →A. P↓ B. P↑ • Increase m →A. P↓ B. P↑ • Increase DE (K=0) →A. P↓ B. P↑ • Increase w →A. P↓ B. P↑ Huterer et al Note modulus

  39. Which is more important?Distance or growth? Simpson & Bridle

  40. Dependence on cosmology Refregier et al SNAP3 A. m = 0.35 w=-1 B. m = 0.30 w=-0.7 ? ?

  41. (Hu 1999)

  42. (Hu 1999) See Heavens astro-ph/0304151 for full 3D treatment (~infinite # bins)

  43. (Hu 1999)

  44. (Hu 1999) Parameter estimation for z~2

More Related