1 / 13

SCILOV10 FP Meeting SCIAMACHY irradiance validation

SCILOV10 FP Meeting SCIAMACHY irradiance validation. M. Weber and S.No ë l Institute of Environmental Physics (IUP), University of Bremen ( weber@uni-bremen.de ). SCILOV10 FP, Frascati , 26/27 February, 2014. Overview. NOTE:

alexa
Download Presentation

SCILOV10 FP Meeting SCIAMACHY irradiance validation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SCILOV10 FP MeetingSCIAMACHY irradiance validation M. Weber and S.Noël Institute of Environmental Physics (IUP), University of Bremen (weber@uni-bremen.de) SCILOV10 FP, Frascati, 26/27 February, 2014

  2. Overview • NOTE: • comparisonsaredonefor SCIAMACHY data at thebeginningofthemission (changefrompre-flightcondition) • timeseriesinformationavailablefrom SOST web page (degradationmonitoring) http://www.iup.uni-bremen.de/sciamachy/LTM/LTM.html SCIAMACHY calibration Pastvalidationactivities Comparisonof SCIAMACHY V7 and V8 spectral solar irradiance (SSI) with Atlas-3 composite (considered a referencedataset) Recentresults on NIR SSI (controversy)

  3. SCIAMACHY SSI • Correctionstomirrorsurfacepolymerisationandothereffects (degradationcorrection): • WLS correction (Pagaran et al. 2011) Drawback: WLS degradestoo! • m-factorapproach (Bramstedt et al. 2009)  V7 • Optical throughputmodelwithlayercontamination (Krijger et al. 2014)  V8 Drawback, bothassumeconstantsun! • 230-2400 nm, moderateley high spectralresolution (0.2-1.5 nm) • Daily measurementsavailable • Preflight absolute radiometricallycalibrated (TPD-TNO) using FEL lampsand NASA sphere, partially in thermal vacuum (not for all scanangles) • Additional inflightcalibration (Lichtenberg et al. 2006): • Straylight (inner-, intrachannel, spatial) • UV/VIS, Si detector, Ch. 1-5 • memoryeffect • darkcurrent (leakagecurrent, analog offset) • NIR channel, InGaAsdetector, Ch. 6-8 • non-linearity • badanddeadpixels • darkcurrent (large thermal background) • pixel-to-pixel gain • Ice-layer (rapid throughputchanges) decontaminationphases

  4. Atlas-3 Composite SSI (Thuillier et al., 2004) • Composite • 200-400 nm: SSBUV, SUSIM and SOLSPEC data from the ATLAS 1 and 3 (shuttle) missions,and SOLSTICE and SUSIM from UARS • 400-800 nm: SOLSPEC data • > 800 nm SOSP IR data • Spectralresolution: 0.25-0.5 nm

  5. Ballon LPMA/DOAS absolute radiometricallycalibrated Gurlit et al., 2005 LPMA/DOAS at 32 km altitudeaboveAire-sur-l‘adour, Oct. 9, 2003 SSI ratioswithrespecttoKurucz Kitt Peak FTS Keydata update for V6

  6. Pastvalidationactivities SIM/SORCE 250-3000 2003-2010 Harder et al., (2010) • Skupin et al., 2005, Noel et al., 2007, Pagaran et al. 2011 x

  7. Fewexamplesofpastvalidation • Comparisonof V6 with/without WLS correctionwithseveralotherdata (Pagaran et al., 2011) • SCIAdatafrom April 2004 Comparisonof V5 with WLS correctionwith SIM (Noel et al., 2007)

  8. SCIAMACHY SSI V7 versus V8

  9. Comparisonto ATLAS-3 composite

  10. Conclusionand Outlook SCIAMACHY agreestowithin 3% with Atlas-3 in thevisible (verysimilarto V7 andearliercomparisons) SCIAMACHY in V7 and V8 underestimate ATLAS-3 in the UV (3-10%), differencesincreasetowardslowerwavelengths SCIAMACHY V8 improves in theoverlapregionsCh. 3/4 and 4/5 andnear 350 nm, but also producesfeatures (near 850 nm, > 1500 nm) both m-factors (Bramstedt et al., 2009) andopticalthroughputmodel (Krijger et al. 2014) do not accountfornatural solar variability(solar cycle, 27-day solar rotation) whichisprobably ok fortrace gas andcloud/aerosolatmosphericretrievals

  11. Recommendations Still someissueswith NIR channels in V8 (quick icing a problem, 850 nm)  needsfurtherevaluation Specific solar dataproductsforspaceand solar sciencecommunities (noremovalsofnaturalvariability) in additionto V8 data Improvingdegradation (opticalthroughputmodel) byallowingfornatural SSI variability (EU Solid, BMBF ROMIC) Correctionsfrompre-flightconditionis still not complete (check on etaloncorrections)

  12. Correction w.r.t preflight Fit range Changesfrompreflight WLS lampcorrection(inflighttopreflight): Improves UV and NIR!

  13. Somehottopics: NIR SSI Bolsee et al., Sol. Phys., 2014 NIR SSI lowerby 8% (>1600 nm) w.r.t. ATLAS-3 and SIM SCIAMACHY in agreementwithgrounddata (IRSPERAD) and ISS SOLAR/SOLSPEC Using WLS correction also goodagreement in Channels 7/8 with SOLAR/SOLSPEC on ISS (Thuillier et al., 2013)

More Related