1 / 31

X-ray Spectral Variability of Tev Blazer During Rapid Flares

X-ray Spectral Variability of Tev Blazer During Rapid Flares. 报告人:倪嘉阳. 研究目的. 观察 Mrk 421 出现的闪耀的现象 对一个持续为几天的闪耀进行具体的研究,研究它的能谱 (SED) 变化,用经验模型对能谱进行拟合 用同步辐射对 X-ray 波段能谱进行拟合,得到在闪耀的不同时期物理参数的变化. 简要介绍. 耀变体 (Blazar) 是喷流方向靠近视线方向的活动星系核 具有快速的光变,通过一个个的闪耀体现出来 TeV Blazar 即为在 TeV(gamma-ray) 波段也有很强辐射的耀变体.

Download Presentation

X-ray Spectral Variability of Tev Blazer During Rapid Flares

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. X-ray Spectral Variability of Tev Blazer During Rapid Flares 报告人:倪嘉阳

  2. 研究目的 • 观察Mrk 421出现的闪耀的现象 • 对一个持续为几天的闪耀进行具体的研究,研究它的能谱(SED)变化,用经验模型对能谱进行拟合 • 用同步辐射对X-ray波段能谱进行拟合,得到在闪耀的不同时期物理参数的变化

  3. 简要介绍 • 耀变体(Blazar)是喷流方向靠近视线方向的活动星系核 • 具有快速的光变,通过一个个的闪耀体现出来 • TeV Blazar即为在TeV(gamma-ray)波段也有很强辐射的耀变体

  4. 图1.Mrk 421在相对平静期和爆发期的SED (引自arxiv:1108.0607v2)

  5. 数据处理 • RXTE: three instruments • Use ASM and PCU only • Choose PCU2 as standard detector • Process: Find a standard2 and filter file Create a GTI file Backgroud spectrum: Use the latest model Create a source spectrum Create response matrix Use xspec to analyze spectrum

  6. ASM light curve of Mrk 421 in 2010 图2. Mrk 421在2010年的ASM图

  7. PCA light curve of Mrk 421 图3.Mrk 421在两个不同时间段的PCU2图

  8. The basics of spectral fitting • The spectrometer obtains photon counts(C) within specific instrument channels,(I). • Choose a model spectrum to match the data obtained by the spectrometer • A “fit statistic” is used to judge whether the model spectrum “fits” the data • The most common fit statistic is χ2:

  9. Experimental model to fit SED • Subtract the background • For every model (powerlaw and cutoff powerlaw) we considerd, we need to consider the effect of absorption of Hydrogen in line of sight • Add 1% systematic error • Use 3-25keV

  10. Use the power law distribution model to fit the obtained spectrum

  11. SED and powerlaw model fit at different times 图4. t1时刻幂律谱的拟合

  12. 图5. t2时刻幂律谱的拟合

  13. 图6. t3时刻幂律谱的拟合

  14. 图7. t4时刻幂律谱的拟合

  15. 图8. t5时刻幂律谱的拟合

  16. Put together the five pictures 图9. 总的幂律谱的拟合

  17. The disadvantage of power law spectrum model • 对实际的辐射物理过程忽略了辐射损耗造成的电子能谱的改变 • 可以从拟合的图中看出在频率比较大时powerlaw比观测值大, χ2的值也比较大 • 用power law with a exponential cut-off 进行拟合

  18. Use power law with a exponential cut-off model to fit the spectrum

  19. SED and cutoff powerlaw model to fit at different times 图10. t1时刻指数截断幂律谱的拟合

  20. 图11. t2时刻截断幂律谱的拟合

  21. 图12. t3时刻指数截断幂律谱的拟合

  22. 图13. t4时刻指数截断幂律谱的拟合

  23. 图14. t5时刻指数截断幂律谱的拟合

  24. 图15. 总的截断幂律谱的拟合

  25. 利用同步辐射模型进行拟合 对于同步辐射模型相应的参数设定: 一. 固定参数: 源的距离d=136.86Mpc(z=0.030) 源的多普勒因子为δ =15.0 辐射区的大小r=1.0e16cm 洛伦兹因子的左边界γmin=1.0e4

  26. 二. 变化参数: 最小的能谱指数P(2.50),最大的能谱 P(4.0), 线性步长0.01 洛伦兹因子的右边界的max的最小值(1.0e5),最大值(1.0e7),对数步长10 磁场B的最小值(0.2),最大值(2.0),对数步长10 电子总能量Etot的最小值(1.0e10),最大值(1.0e12),对数步长10

  27. 拟合得到的最佳拟合物理参数

  28. 利用同步辐射模型得到的五个时间段总的能谱图利用同步辐射模型得到的五个时间段总的能谱图 图16. 用同步辐射模型拟合得到的总的能谱图

  29. 研究P值和流量的相关性 图17. 能谱指数和PCU2计数图

  30. 参考文献 【1】Yongquan Xue, Feng Yuan, and Wei Cui.2006, ApJ,647,194 【2】Wei Cui.2004, ApJ, 605,662 【3】尤峻汉. 《天体物理辐射机制》,1996 【4】Jin Zhang, En-Wei Liang, Shuang-Nan Zhang, J.M.Bai,Arxiv:1108.0607v2

  31. 谢谢大家!

More Related