1 / 27

CONTENT BASED FACE RECOGNITION

CONTENT BASED FACE RECOGNITION. Under the guidance of Prof. Pushpak Bhattacharya . Ankur Jain 01D05007 Pranshu Sharma 01005026 Prashant Baronia 01D05005 Swapnil Zarekar 01D05001. Introduction. Problem Statement :

alia
Download Presentation

CONTENT BASED FACE RECOGNITION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CONTENT BASED FACE RECOGNITION Under the guidance of Prof. Pushpak Bhattacharya Ankur Jain 01D05007 Pranshu Sharma 01005026 Prashant Baronia 01D05005 Swapnil Zarekar 01D05001

  2. Introduction Problem Statement : • Given an image, to identify it as a face and/or extract face images from it. • To retrieve the similar images (based on a heuristic) from the given database of face images.

  3. Why face recognition ? Various potential applications, such as • person identification. • human-computer interaction. • security systems.

  4. Difference From Image Recognition • Faces are complex, multidimensional and meaningful visual stimuli. • Face Recognition is difficult. • Face Images are similar in overall configuration.

  5. Approach • Similar toContent BasedImage Retrieval (CBIR). • Neural Networks andSelf Organizing Maps(SOMs). • Principal Component Analysis(PCA). • Relevancefeed back.

  6. Stages of Face Recognition • (1) face location detection • (2) feature extraction • (3) facial image classification • Approaches of Feature Extraction • (1) local feature : eyes, nose, mouth information • easily affected by irrelevant information . • (2) global feature : • extract feature from whole image .

  7. Face Recognition Using Eigenfaces

  8. Eigen Space and Eigen Faces • Face Images are projected into a feature space (“Face Space”) that best encodes the variation among known face images. • The face space is defined by the “eigenfaces”, which are the eigenvectors of the set of faces.

  9. Steps In Face Recognition • Initialization : • Acquire the training set and calculate eigenfaces (usingPCA projections) which define eigenspace. • When anew faceis encountered, calculate itsweight. • Determine if the image is face. • If yes,classify the weight patternas known or unknown. • (Learning) If the same unknown face is seen several timesincorporate it into knownfaces.

  10. PCA Main assumption of PCA approach: • Face spaceforms a clusterin image space. • PCA givessuitable representation.

  11. Eigenfaces (1) • Calculation of Eigenfaces (1) Calculate average face : v. (2) Collect difference between training images and average face in matrix A (M by N), where M is the number of pixels and N is the number of images. (3) The eigenvectors of covariance matrix C (M by M) give the eigenfaces. • M is usually big, so this process would be time consuming. What to do?

  12. Eigenfaces (2) • Calculation of Eigenvectors of C If the number of data points is smaller than the dimension (N<M), then there will be only N-1 meaningful eigenvectors. Instead of directly calculating the eigenvectors of C, we can calculate the eigenvalues and the corresponding eigenvectors of a much smaller matrix L (N by N). if λi are the eigenvectors of L then A λi are the eigenvectors for C. • The eigenvectors are in the descent order of the corresponding eigenvalues.

  13. Eigenfaces (3) • Representation of Face Images using Eigenfaces • The training face images and new face images can be represented as linear combination of the eigenfaces. • When we have a face image u : Since the eigenvectors are orthogonal :

  14. Eigenfaces (4) • Experiment and Results Data used here are from the ORL database of faces. Facial images of 16 personseach with 10 views are used. - Training set contains 16×7 images. - Test set contains 16×3 images. First three eigenfaces :

  15. Classification UsingNearest Neighbor • Save average coefficients for each person. Classifynew face as the person with the closest average. • Recognition accuracyincreases with number of eigenfaces till 15. Later eigenfacesdo not help muchwith recognition. Best recognition rates Training set 99% Test set 89%

  16. Neural Networks and TS-SOM

  17. What are Neural Networks ? • Individual units to simulate Neurons • Parallel Processing • Many inputs and single output • Organization/structure of the TLU’s is important

  18. What is SOM ? • TS-SOM :- Tree structureself-organizing maps • Competitive learning ANN • Each unit of map receives identicalinputs • Units compete for selection • Modification of selected node and its neighbors

  19. Training of SOM • Randomly initialized • Selection based on some query parameter • On selection a node and its neighbors are modified • Degree of modification reduces with each iteration

  20. Example of a two-dimensional TS-SOM structure of 3 levels

  21. Algorithm • Calculateweight vectorfor first level. • Initializeweight vectors of other levels. • Calculatecentroid associated to each node as mean of closest training samples. • Iterateto the next level.

  22. Relevance Feedback • Systemcontent basedretrieval. • Point of human intervention • User analysis of system output. • User selectsmost relevant • Query iteratedif output not satisfactory

  23. InteractionBetween User & System • A random set of faces is presented to the user. • User interactive selection of faces. • Systemcontent-based face retrieval. • User analysis of retrieved faces. • Requested face was found -> Exit • Similar faces were found. -> Go to 2 • No similar faces were found. • User tired -> Exit • User not tired (re initialization -> Go to 1

  24. Comparison of the Two Approaches • Training time Nearest neighbor is much faster. • Storage About the same. • Classification time Nearest neighbor is slightly slower. • Accuracy Neural network is able to achieve the same accuracy using 5 eigenfaces with nearest neighbor using 15, and a higher accuracy when using 15. Neural network models the problem better, but takes more training time.

  25. Future Work • Face Detection in motion pictures. • Detailed study of the proposed systemassuming PCA assumptions not to be true. • Investigate whethereigenfacesis a good solution for this problem by comparing with other feature extraction techniques such asDCT

  26. References • Navarrete P. and Ruiz-del-Solar J. (2002), “Interactive Face Retrieval using Self-Organizing Maps”, 2002 Int. Joint Conf. on Neural Networks – IJCNN 2002, May 12-17, Honolulu, USA. • “A tutorial on Principal Components Analysis”, By Lindsay I Smith. • “Eigenfaces for Recognition”, Turk, M. and Pentland A., (1991)Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86. • Ruiz-del-Solar, J., and Navarrete, P. (2002). “Towards a Generalized Eigenspace-based Face Recognition Framework”, 4th Int. Workshop on Statistical Techniques in Pattern Recognition, August 6-9, Windsor, Canada. • Simulating Neural Networks by James A. Freeman. • Artificial Intelligence by Neil J. Nielsson.

More Related