1 / 12

4.4 and 4.5: Derivatives of Exponential and Log Functions

4.4 and 4.5: Derivatives of Exponential and Log Functions. Review Properties of Logs and Exponential Function. Inverse: log a x = y a y = x l nx = y e y =x Other properties: ln a x = xlna l oga x = xloga. Properties of Logs and Exponential Functions cont.

Download Presentation

4.4 and 4.5: Derivatives of Exponential and Log Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4.4 and 4.5: Derivatives of Exponential and Log Functions

  2. Review Properties of Logs and Exponential Function Inverse: logax = y ay = x lnx = y ey=x Other properties: ln ax = xlna logax= xloga

  3. Properties of Logs and Exponential Functions cont. logaax=x lnex = x =x elnx = x Change of base: logax =

  4. Derivative of ex: Derivative of ax:

  5. Examples: Find the derivative. 1. 2. 3. 4.

  6. Find the derivative. 1. 2. 3. 4.

  7. 1. 2.

  8. When does the tangent line to the graph of y = 2t -3 have a slope of 21?

  9. Derivatives of Logarithmic Functions

  10. Find the derivative. 1. 2. 3. 4.

  11. Examples: Find the derivative. 1. 2.

  12. An absolute value inside of a logarithm has no effect on the derivative, other than make the result valid for more x values. (see p. 287) Example: Find the derivative.

More Related