500 likes | 672 Views
FUSION A promising source of energy. Claude Boucher. Cours de Physique des plasmas. Octobre, 2009. Plan. Why Fusion ? Energy supply Climate change Basic concepts The TOKAMAK ( toroidalnaya kamera magnitnaya ) Power balance of a thermonuclear furnace Confinement time Lawson criteria
E N D
FUSIONA promising source of energy Claude Boucher Cours de Physique des plasmas Octobre, 2009
Plan • Why Fusion ? • Energy supply • Climate change • Basic concepts • The TOKAMAK (toroidalnayakameramagnitnaya) • Power balance of a thermonuclear furnace • Confinement time • Lawson criteria • Break-even vs Ignition • ITER • Power plant Cours de Physique des plasmas 2 Octobre, 2009
World primary energy consumption patterns 1 Mtoe = 0.042 EJ 462 EJ From BP Statistical Review of World Energy 2008, http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622 Cours de Physique des plasmas 3 Octobre, 2009
Energy demand (forecast) IEA World Energy Outlook www.worldenergyoutlook.org World energy demand expands by 45% between now and 2030 –an average rate of increase of 1.6% per year –with coal accounting for more than a third of the overall rise 1 Gtoe = 42 EJ Cours de Physique des plasmas 4 Octobre, 2009
Fossil fuel reserves-to-production (R/P) ratios From BP Statistical Review of World Energy 2008, http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622 Cours de Physique des plasmas 5 Octobre, 2009
Estimated reserves of the principal non renewable resources aforecast for 2050 are between 500 and 800 EJ b X 10 including « non-conventional » sources 1 Consortium Fusion Expo Europe 2 Intergovernmental Panel on Climat Change (IPCC http://www.ipcc.ch/ ) Cours de Physique des plasmas 6 Octobre, 2009
Renewables (Left) U.S. electricity net generation by all fuels, and (Right) contribution of biomass, wind, geothermal, and solar technologies to the non-hydro renewables wedge . Proceedings of the IPCC SCOPING MEETING ON RENEWABLE ENERGY SOURCES, Lübeck, Germany, 20 – 25 January, 2008 Cours de Physique des plasmas 7 Octobre, 2009
Beauharnois hydro plant • Power : 1 657 MW • Type : Run-of-the-River • Number of turbines : 38 • Height : 24 m • Commissioned : 1932-1961 • Water system: St-Laurence river • Reservoir :Lake Saint-François • Reservoir area : 233 km2 Cours de Physique des plasmas 8 Octobre, 2009
Solar panels 1 GWe from maximum solar illumination of 1kW/m2 => 1km x 1km for 100% efficiency Efficiencies for PV ~10 to 20% with new technologies ~40% Cours de Physique des plasmas 9 Octobre, 2009
Area • Solar = 5,2 million de km2 • = 56% of Canada or US • = 2/3 of Australia • Wind = 0,6 million km2 • Area larger than France All renewable supply • Hypothesis 2100 • Population = 9 billion • High efficiency at 100,000 TWh • Average of 11 TW ≈ actuel • Sources • Solar = 40% • Wind = 40% • Other renewable = 20% Source: G. Lafrance, book in preparation, Multimondes, fall 2006. Cours de Physique des plasmas 10 Octobre, 2009
CO2 emissions IEA World Energy Outlook www.worldenergyoutlook.org Cours de Physique des plasmas 11 Octobre, 2009
Climate impact (1) Observed changes in (a) global average surface temperature; (b) global average sea level from tide gauge (blue) and satellite (red) data; and (c) Northern Hemisphere snow cover for March-April. All differences are relative to corresponding averages for the period 1961-1990. Smoothed curves represent decadal averaged values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). IPCC, Climate Change 2007: Synthesis Report (Valencia, Spain, 12-17 November 2007) Cours de Physique des plasmas 12 Octobre, 2009
Climate impact (2) United Nations Environment Program SRES (Special Report on Emission Scenarios (IPCC)) Cours de Physique des plasmas 13 Octobre, 2009
Role of “renewables” • Solar, wind, biomass, geothermal, … • “low density” applications • ~ 20 % of world supply • Intensive land use • Need for clean, abundant, “high density” source ENTER FUSION Cours de Physique des plasmas 14 Octobre, 2009
D-T reaction E = MC2 Cours de Physique des plasmas 15 Octobre, 2009
Efficiency Cours de Physique des plasmas 16 Octobre, 2009
Fuel equivalence Relative quantities of fuel required each year in different 1000 MW power plants 0.6 ton Fusion 1 pick-up truck 150 tons 8 semi-trailors Fission 10,000,000 barrels Oil 7 super tankers, each of length equivalent to the CN tower Coal 191 trains de 110 wagons each, for a total length of 400 km 2,100,000 tons From « Fusion, energy for the future », National fusion program, 1991 Cours de Physique des plasmas 17 Octobre, 2009
Fusion reactions Large cross section 50% 50% Small cross section Plus other possible reactions but with very small cross sections Cours de Physique des plasmas 18 Octobre, 2009
Fusion cross sections http://wwwppd.nrl.navy.mil/nrlformulary/index.html Cours de Physique des plasmas 19 Octobre, 2009
Tritium breeding Tritium is produced by the interaction between fusion neutrons and lithium in a blanket surrounding the plasma Lithium is abundant in nature. Average concentration in the earth’s crust is about 0.004% (mass) n + 6Li = He +T + 4.8 MeV n + 7Li = He +T – 2.5 MeV + n The “consumables” are deuterium and lithium Cours de Physique des plasmas 20 Octobre, 2009
Plasma • Mater is ionized: • electrons (-) and ions (+) • Degree of ionization related to temperature: • High temperature means no more neutrals • Particles will have “distribution function” • Charged particles gyrate around magnetic field lines Cours de Physique des plasmas 21 Octobre, 2009
3 m /sec D-T reaction rate T in KeV Cours de Physique des plasmas 22 Octobre, 2009
The tokamak Toroidal coils Primary circuit The tokamak works like a transformer. a current ramp in the primary circuit generates a constant current (plasma) as the secondary. Plasma current Secondary circuit Toroidal field Helicoidal field Poloidal field Cours de Physique des plasmas 23 Octobre, 2009
Tokamak geometry • Axis: • Toroidal • Poloidal • Radial • Properties: • Elongation • Triangularity • Aspect ratio e = 1/A = a/R q = aBf / RBq = e(Bf / Bq) b = p / (B2 / 2m0) Cours de Physique des plasmas 24 Octobre, 2009
Magnetic geometries Limiter Divertor Cours de Physique des plasmas 25 Octobre, 2009
Tokamaks existants Source: Pamela-Solano EFDA
Tokamak - pulse scenario TOKAMAK pulse Charge transformer rapid fall for breakdown plasma initiated, current ramp up Ohmic heating + auxiliary heating Plateau, Current ramp down Cours de Physique des plasmas 27 Octobre, 2009
alphas Pa Pf neutrons Pn P 2 1 / 2 n a T = R Power balance SOURCES (i) LOSSES (o) Ions 3/2(nTi) Po,i Pi,i Po = Pi Electrons 3/2 (nTe) Po,e Pi,e PR Cours de Physique des plasmas 28 Octobre, 2009
Stabilité thermique = a 2 m = R 6 m = P 100 MW i - = 20 3 n 10 m t = 1 , 7 sec E = + S P P a i 3 n T = + L P t R E
= P P P + R i o Confinement time (Break-even) Sources = Losses Break-even when the energy out in the fusion products balances the auxiliary power injected This determines break-even condition for the ntE product Q = Pf / Pi = 1 = P P i f T t = n 1 E s - 1 / 2 v E a T f 4 Cours de Physique des plasmas 30 Octobre, 2009
Confinement time(Ignition) For ignition, the energy in the a particles is “recycled” and heats the fresh D and T being injected. The fusion reaction is then maintained with Pi = 0 Q becomes infinite = P P P + a o R Cours de Physique des plasmas 31 Octobre, 2009
Confinement time Cours de Physique des plasmas 32 Octobre, 2009
Results From Contemporary Physics Education Project http://FusEdWeb.pppl.gov Cours de Physique des plasmas 33 Octobre, 2009
JET: THE WORLD’S LARGEST TOKAMAK Cours de Physique des plasmas 34 Octobre, 2009
Demonstration to date Continuous Source: Pamela-Solano, EFDA-JET Watkins, JET Cours de Physique des plasmas 35 Octobre, 2009
ITER : History • 1985 Geneva Summit • 1986 start • 1988-1990 CDA (Conception) US-EU(Canada)-J-FR • 1990-1992 interim • 1992-1998 EDA (Engineering) US-EU(Canada)-J-FR • 1998-2001 EDA 2 (Detailed Engineering ) EU(Canada)-J-FR • 2001-2002 CTA (technical, negotiations) EU-Canada-J-FR • 2005 Site selection (Cadarache France) • 2006-2016 Construction • 2016-2036 Experiment • 2036 Decommissioning Costs 8500 M$CAD Construction 8500 M$CAD Experiment <1000 M$CAD Decommissioning Cours de Physique des plasmas 36 Octobre, 2009
ITER • Main systems: • Blanket, supports • Divertor plates – up to 20 MW/m2 (1/2-2/3 total plasma power) • Pumping ducts and criopumps, pump injected D and T, He and impurities • Gas throughput (200 Pa-m3/s) and pumping speed(~ 100 m3/s) dictate divertor behavior • SC coils- 13 T • Mechanical loads of 400 ton on internal components at disruptions • Radial loads of 40,000 tons in each coils Cours de Physique des plasmas 37 Octobre, 2009
ITER cross-section Cours de Physique des plasmas 38 Octobre, 2009
Design Reach sustained burn in inductive mode, Q=10 Significant parameter window Sufficient duration for stationary plasma (~ hundreds of s) Target demonstration of continuous operation with Q at least 5 Not exclude the possibility of attaining controlled ignition (Q>>10) Technology: demonstration of the availability and the integration of reactor technologies tests of components, Tests of tritium blankets => 300-500s of full current in inductive operations => average neutron flux ≥ 0.5 MW/m2 => average neutron fluence of ≥ 0.3 MWa/m2 ITER : Objectives Cours de Physique des plasmas 39 Octobre, 2009
Operate at Q=10 with significant window in parameters for pulse length consistent with characteristic times. Operate at high Q for long pulses. Study continuous operation at Q=5 Reach controlled ignition in favorable conditions ITER : Program Cours de Physique des plasmas 40 Octobre, 2009
ITER PHYSICS The ITER Physics program has multiple components and is developed through experiments on today’s tokamaks, and by theory and modeling, and has, as its prime objective, the development of a capability to predict tokamak performance. Key elements include: • Understanding the transition between low (L) and high (H) • confinement modes: prediction of power needed for L--> H transition • Prediction of core fusion performance in H mode • Control and mitigation of MHD instabilities • Power and particle control • Development of higher performance operation scenarios • Identification and understanding of the new physics that will occur • under ‘burning plasma’ conditions. Cours de Physique des plasmas 41 Octobre, 2009
AUG JET ITER ITER confinement time http://www.tokamak.info/ Cours de Physique des plasmas 42 Octobre, 2009
BURNING PLASMA PHYSICS At Q > 1 have significant self heating due to fusion alphas. Isotropic energetic population of 3.5 MeV alphas. Plasma is now an exothermic medium and highly non-linear. Alpha particles may have strong resonant interaction with Alfven waves. Ti~ Te since Va >> Vi, and ma >> me the alphas particles slow predominantly on the electrons. Reliable simulation is not possible. Need experiments in the new regime Opportunity for unexpected discovery is very high! Cours de Physique des plasmas 43 Octobre, 2009
ITER diagnostics installed in ports where possible Each diagnostic port-plug contains an integrated instrumentation package Cours de Physique des plasmas 44 Octobre, 2009
ITER : Status As of 28 February 2009, the ITER Organization employs 356 staff members: 235 professional and 121 support. All seven Parties are represented amongst the professional staff: 141 originate from the EU,10 from India,19 from Japan,15 from China,16 from Korea,17 from Russia, and17 from the US. • Construction started • Procurement well underway http://www.iter.org/newsline/Pages/Archive.aspx Cours de Physique des plasmas 45 Octobre, 2009
Challenges • Modeling • Materials • Resistance to thermal loads and chocs • Activation • T blanket • Breeding ratio > 1 • Remote Manipulation • Assembly • Maintenance Cours de Physique des plasmas 46 Octobre, 2009
Thermonuclear power plant Ideal scenario for replacement of liquid fossil fuel: Fusion to supply electricity to generate hydrogen for fuel cells. From « La fusion thermonucléaire, une chance pour l’humanité », J. Ongena, G. Van Oost et Ph. Mertens, 2001 Cours de Physique des plasmas 47 Octobre, 2009
CONCLUSION E=mc2 Nuclear technology Fission FUSION Cours de Physique des plasmas 48 Octobre, 2009
Thank you ! Merci ! boucher@emt.inrs.ca http://claude.emt.inrs.ca Cours de Physique des plasmas 49 Octobre, 2009
Fusion research in Canada • Universities • Alberta • Saskatchewan • Toronto • Queen’s • INRS Back to the future http://www.imdb.com/title/tt0088763/ Cours de Physique des plasmas 50 Octobre, 2009