1 / 18

Вейвлеты и банки фильтров

Занятие 4. Вейвлеты и банки фильтров. План. Вейвлеты и их связь с банками фильтров Дискретное вейвлет-преобразование Квадратурные зеркальные фильтры Пирамидальное представление данных Банки фильтров: DFT, MDCT Применения банков фильтров Аудиоэффекты Шумоподавление

alima
Download Presentation

Вейвлеты и банки фильтров

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Занятие 4 Вейвлетыи банки фильтров

  2. План • Вейвлеты и их связь с банками фильтров • Дискретное вейвлет-преобразование • Квадратурные зеркальные фильтры • Пирамидальное представление данных • Банки фильтров: DFT, MDCT • Применения банков фильтров • Аудиоэффекты • Шумоподавление • Компрессия звука и изображений

  3. Преобразование Хаара • Простейший случай вейвлет-преобразования Дан входной сигнал x[n]. Образуем от него последовательности полусумм и полуразностей: Легко видеть, что сигнал x[n] можно восстановить: Такое кодирование избыточно: из одной последовательности получаем две.

  4. Преобразование Хаара • Устранение избыточности Проредим полученные последовательности в 2 раза: Легко видеть, что справедлив алгоритм восстановления: (интерполяция нулями) (фильтрация) (суммирование)

  5. Коэффициенты H2 ↓2 ↑2 G2 x[n] x’[n] + H1 ↓2 ↑2 G1 Декомпозиция Реконструкция Дискретное вейвлет-преобразование • Обобщение преобразования Хаара Свойство точного восстановления (PR): Количество информации не изменяется. Нужно найти хорошие фильтры, обеспечивающие точное восстановление.

  6. Дискретное вейвлет-преобразование • Прореживание • Интерполяция ↓2 ↑2

  7. Дискретное вейвлет-преобразование • Квадратурные зеркальные фильтры (QMF) частотные характеристики импульсные характеристики

  8. Дискретное вейвлет-преобразование • QMF: базис Хаара Плохое частотное разделение, но хорошая временная (пространственная) локализация

  9. Дискретное вейвлет-преобразование • Условия точного восстановления: • Рассмотрим случай h1[m] – симметричный, четной длины • В этом случаетребуется, чтобы • Построение PR-вейвлетов: • Нужна хорошая пространственная локализация – берем стандартные вейвлеты (например, вейвлеты Добеши). • Нужна хорошая частотная локализация – свойству PR удовлетворить трудно. Поэтому строим QMF со свойством «почти PR».

  10. Дискретное вейвлет-преобразование • Построение «почти PR»-фильтров большого размера с хорошим частотным разделением: • Строим симметричный НЧ-фильтр h1[m] методом оконного взвешивания. • Нормируем его коэффициенты: • Строим дополняющий его ВЧ-фильтр h2[m]: • Проверяем величину искажений по суммарной частотной характеристикеи пробуем изменить частоту среза НЧ-фильтра для уменьшения искажений.

  11. Коэффициенты H2 ↓2 x[n] H1 ↓2 H2 ↓2 H1 ↓2 Пирамидальное представление • Продолжаем вейвлет-разложение для НЧ-коэффициентов Частотный диапазон делится на октавы Двумерное вейвлет- преобразование на каждом шаге получаем 4 набора коэффициентов: НЧ («основные») и ВЧ («детализирующие»)

  12. Определение вейвлета • Дискретный вейвлет • Последовательность чисел • Ортогональна своим сдвигам на четное число точек: • Существует скейлинг-функция (НЧ-фильтр), ортогональная вейвлету: • Непрерывный вейвлет • Функция • Равенство нулю интеграла

  13. Непрерывный вейвлет-анализ • Скалярные произведения исследуемой функции f(t) с непрерывными вейвлетами ψa,b(t)

  14. Банки фильтров • Банки фильтров – преобразования, разбивающие сигнал на несколько частотных полос. • С точным восстановлением? • С увеличением количества информации? • С перекрытием между временными окнами? • Пример: дискретные вейвлеты • Еще пример: кратковременное преобразование Фурье (STFT – Short Time Fourier Transform)

  15. f f t t Оконное ДПФ Вейвлеты Банки фильтров • Как банки фильтров разбивают частотно-временную плоскость?

  16. Банки фильтров: STFT • Без окон, без перекрытия • Плохое разделение по частотам • Временной алиасинг • Нет избыточности • С окнами, с перекрытием • Хорошее разделение по частотам • Нет временного алиасинга (при двукратном применении окон) • Избыточность

  17. Банки фильтров: MDCT • Хорошее разделение по частотам • С перекрытием и уничтожением временного алиасинга • Без избыточности! Каждое окно длины 2N захватывает N новых отсчетов и выдает N коэффициентов Требование к окнам: Подходящие окна – Kaiser-Bessel derived (KBD)

  18. Банки фильтров:достоинства и недостатки • STFT • DWT + Очень быстрая реализация для большого числа полос. Слишком различающееся число осцилляций базисных функций, эффект Гиббса. – + Возможность произвольных разбиений F-T плоскости. Малое число частотных полос. Плохое частотное разделение между полосами. –

More Related