140 likes | 330 Views
Fin250f: Lecture 4.1 Fall 2005 Reading: Taylor, chapter 5.1-5.6. Random Walk Tests and Variance Ratios. Outline. Variance ratios Autocorrelation sampling theory. Types of Random Walks. e(t) IID: No volatility persistence e(t): expectation zero, zero correlation No linear predictors
E N D
Fin250f: Lecture 4.1 Fall 2005 Reading: Taylor, chapter 5.1-5.6 Random Walk Tests and Variance Ratios
Outline • Variance ratios • Autocorrelation sampling theory
Types of Random Walks • e(t) IID: • No volatility persistence • e(t): expectation zero, zero correlation • No linear predictors • Might be nonlinear predictors • Allows for volatility prediction
Random Walks and Market Efficiency • Classic implications • Price forecasting hopeless • Technical analysis useless • Modern thoughts/reminders • Dynamic strategies that • Increase expected returns • Increase risk • Still consistent with market efficiency
Variance Ratios: Random Walk Test • Test: VR(N)=1 • Two problems • Distribution of VR? • Which N?
Matlab Examples • vratio • vratiotest • nmcvratio • bsvratio
Longer Time Horizons • Weekly • Lo and Mackinlay(1988) • Strong rejections on weekly equal weighted index (not value weighted) • Few rejections for individual stocks • Stale prices and nontrading?
Longer Time Horizons • Monthly • Poterba and Summers(1988) • Weak positive correlations (not sig) • Annual • Weak negative long range correlations (not sig)
Autocorrelations • For r(t) IID • Autocorrelations are asymptotically distributed N(0, 1/n) • n=sample size • 95% confidence bands • +-1.96/sqrt(n) • pacf.m