1 / 13

Introduction to Geometry – Postulates and Theorems

Introduction to Geometry – Postulates and Theorems

alisa
Download Presentation

Introduction to Geometry – Postulates and Theorems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized.

  2. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles

  3. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles Each definition names the term, defines which set it belongs to ( both are figures ), and states the properties that distinguish it from other terms.

  4. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles Each definition names the term, defines which set it belongs to ( both are figures ), and states the properties that distinguish it from other terms. Postulates – statements that are generally accepted as true Every line contains at least two points.

  5. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles Each definition names the term, defines which set it belongs to ( both are figures ), and states the properties that distinguish it from other terms. Postulates – statements that are generally accepted as true Every line contains at least two points. Postulates help us to state simple facts; in this case referring to lines. Postulates help us draw valid conclusions about complex problems. Sometimes they describe relationships between geometric figures.

  6. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Theorems – statements that must be proved before they are accepted as being true Theorem - If two lines are perpendicular, they form four right angles. To prove this theorem we need to know the definition of perpendicular. Perpendicular Lines – lines that intersect each other at a 90° angle.

  7. Introduction to Geometry – Postulates and Theorems This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Theorems – statements that must be proved before they are accepted as being true Theorem - If two lines are perpendicular, they form four right angles. To prove this theorem we need to know the definition of perpendicular. Perpendicular Lines – lines that intersect each other at a 90° angle. To prove theorems you might need an illustration. The illustration helps show how the lines are perpendicular

  8. Introduction to Geometry – Postulates and Theorems Proof – a formal process used to demonstrate the truth of a statement To prove something in geometry you need to set up a series of logically related statements that lead to some previous conclusion. They are set up as a table…

  9. Introduction to Geometry – Postulates and Theorems Proof – a formal process used to demonstrate the truth of a statement To prove something in geometry you need to set up a series of logically related statements that lead to some previous conclusion. They are set up as a table… Direct Proof – shows that a statement is true because a logical chain of steps supports it. Indirect Proof – shows that a statement can not be false, therefore it must be true

  10. Introduction to Geometry – Postulates and Theorems Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C B A E D

  11. Introduction to Geometry – Postulates and Theorems Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C B A E D

  12. Introduction to Geometry – Postulates and Theorems Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C B A E D

  13. Introduction to Geometry – Postulates and Theorems Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C B A E D

More Related