280 likes | 390 Views
DRAGO: Distributed Reasoning Architecture for the Semantic Web. Andrei Tamilin and Luciano Serafini. S econd European Semantic Web Conferece (ESWC'05) Heraklion, Greece. 1 June 2005. Work is supported by. Talk outline. Motivation and vision Distributed Description Logics (DDL)
E N D
DRAGO: Distributed Reasoning Architecture for the Semantic Web Andrei Tamilin and Luciano Serafini Second European Semantic WebConferece (ESWC'05) Heraklion, Greece 1 June 2005 Work is supported by
Talk outline • Motivation and vision • Distributed Description Logics (DDL) • Distributed tableau for reasoning in DDL • DRAGO reasoning architecture A. Tamilin and L. Serafini
Motivation Where we start: • Steady ontology proliferation • Heterogeneity is inevitable • How to achieve interoperability Interoperability bridge: • Semantic mappings • Reasoning support Goal: • Provide reasoning for ontology space (ontologies interrelated by mappings) A. Tamilin and L. Serafini
Global reasoning vision Compile a global ontology and reason with existing DL tools • Benefits: • Stable theory and tools of DL • Drawbacks: (i) non-scalability (ii) losing language and reasoning specificity (iii) losing privacy and autonomy of ontological knowledge A. Tamilin and L. Serafini
Distributed reasoning vision Reasoning through a combination, via mappings, of distributed local reasoners • Benefits: (i) scalable (ii) respects language specificity (iii) supports information hiding Revisited goal: • Provide a distributed reasoning for ontology space A. Tamilin and L. Serafini
Requirements / Our proposals Requirements / Our proposals • Formal framework to represent ontology space • Distributed Description Logics • Extension of DL • Define a suitable decision procedure • Distributed tableau algorithm • Extension of DL tableau • Implement the reasoning procedure • DRAGO reasoning system • Extension of Pellet OWL DL reasoner A. Tamilin and L. Serafini
Distributed Description Logics A. Tamilin and L. Serafini
i:X j:Y (onto-bridge rule) i:X j:Y (into-bridge rule) DDL syntax • DDL is a family of description logics {DLi}iI • A bridge rule from i to j is an expression of the form: where X and Y are concepts of DLi and DLj. • A distributed T-box (DTB) is a pair {Ti}iI, {Bij}ijI where Bij is a collection of bridge rules from i to j A. Tamilin and L. Serafini
T1 T7 B12 T2 B23 T6 B64 T3 B56 B34 T5 T4 B54 Bridge graph A bridge graph of a DTB A. Tamilin and L. Serafini
DDL semantics A distributed interpretation (DI) of a DTB {Ii}iI, {rij}ijI • Ii is a local interpretation of Ti on a local domain Ii T1,T2,T3,T4,T5,T6,T7 I1,I2,I3,I4,I5,I6, I7 • rij is a domain relations from I to j rijIi x Ij A. Tamilin and L. Serafini
DDL satisfiability DI={Ii}iI,{rij}ijI satisfies DTB={Ti}iI,{Bij}ijI DI DTB If • all Ti are satisfied • all bridge rules Bij are satisfied A. Tamilin and L. Serafini
DI i:X j:Y Into-bridge rule satisfiability rij(xIi) YIj Ij Ii Y X r12(X) rij A. Tamilin and L. Serafini
DI i:X j:Y Onto-bridge rule satisfiability rij(xIi) YIj r12(X) Ij Ii X rij Y A. Tamilin and L. Serafini
isA DTB Subsumption propagation in DDL DTB= T1, T2, B12 T1 T2 A G isA H B GI2r12(AI1) r12(BI1) HI2 Directionality property: Knowledge propagates ONLY along the direction of bridge rules! A. Tamilin and L. Serafini
DTB={Ti}iI,{Bij}ijI DTB i:A B1 … Bn DTB j:G H1 … Hn Generalized subsumption propagation Ti Tj A G B1 H1 H2 B2 … … Hn Bn A. Tamilin and L. Serafini
n n G Hk A Bk T1 k=1 k=1 B12(T1) = 1:A 2:G B12 for 1 k n, n0 1:Bk 2:Hk B12 Soundness and completeness Let DTB12 = T1, T2, B12 be a distributed T-box Bridge operator encapsulates propagated axioms Theorem DTB12 2:X Y T2 B12(T1) X Y A. Tamilin and L. Serafini
Distributed tableau algorithm A. Tamilin and L. Serafini
DTB i:X DTB i:C D Basic reasoning service of DDL • i:X is satisfiable with respect to DTB • if there exist a DI such that DI DTB • and XIi0 Restrictions: (1) bridge graph is cycle-free (2) bridge rules connect atomic concepts (3) no nominals A. Tamilin and L. Serafini
Distributed tableau intuition D Tab1(X) D Tab7(X) D Tab2(X) D Tab6(X) D Tab3(X) D D Tab4(X) Tab5(X) DTabi(X) = Tabi(X) + “lazy computation of bridge operator” A. Tamilin and L. Serafini
DTabi(A (B1 B2)) L(z) = {A (B1 B2)}z i:A j:G H1 H2} i:B2 j:H2 i:B1 j:H1 G H1 H2 A (B1 B2) Distributed tableau intuition Is j:D is satisfiable wrt DTB? DTabj(D) x L(x) = {D} Bij Standard tableau expansion rules y L(y) = {G, … } Clash A. Tamilin and L. Serafini
i:A j:GBij i:B j:HBij If 1. GL(x), , and 2. B {B H {H , and DTabi(A B) = Unsatisfiable for some H L(x), then L(x) L(x) { H} Algorithm formalization DTabj • SHIQ-tableau expansion rules + • “bridge” expansion rule: A. Tamilin and L. Serafini
Algorithm properties Theorem (Termination) For any acyclic distributed T-box and for any SHIQ concept X, DTabj(X) terminates. Theorem (Soundness and completeness) j:X is satisfiable in distributed T-box if and only if DTabj(X) can generate a complete and clash-free completion tree. A. Tamilin and L. Serafini
DRAGO reasoning architecture A. Tamilin and L. Serafini
Distributed reasoning architecture RP3 RP1 URI3 URI1 URI7 B37 RP2 URI2 B67 URI4 URI6 URI5 A. Tamilin and L. Serafini
Implementation • OWL ontologies • C-OWL semantic mappings • Distributed Reasoner is an extension to open source OWL Reasoner Pellet A. Tamilin and L. Serafini
Conclusions • Overviewed DDL formal framework for representing ontologies and mappings • Described subsumption in DDL • Introduced sound and complete decision procedure for cycle-free DDL • Implemented a reasoning prototype, DRAGO, http://trinity.dit.unitn.it/drago A. Tamilin and L. Serafini
Thank You! A. Tamilin and L. Serafini