150 likes | 295 Views
OR II GSLM 52800. Outline. equality constraint tangent plane regular point FONC SONC SOSC. Problem Under Consideration. min f (x) s . t . g i (x) = 0 for i = 1, …, m , (which can be put as g(x) = 0) x S n. Equality Constraint, Tangent Plane, and Gradient at a Point.
E N D
Outline • equality constraint • tangent plane • regular point • FONC • SONC • SOSC 2
Problem Under Consideration • min f(x) • s.t. gi(x) = 0 for i = 1, …, m, (which can be put as g(x) = 0) • x S n 3
Equality Constraint, Tangent Plane, and Gradient at a Point any vector on the tangent plan of point x* is orthogonal to Tg(x*) Tg(x*) y1 y2 x* g(x) = 0 4
Regular Point • the collection of constraints • g1(x) = 0, …, gm(x) = 0 • x0 is a regular point if g1(x0), …, gm(x0) are linearly independent 5
Lemma 4.1 • x* be a local optimal point of f and a regular point with respect to the equality constraints g(x) = 0 • any y satisfying Tg(x*)y = 0 Tf(x*)y = 0 • y on tangent planes of g1(x*), …, gm(x*) 6
Interpretation of Lemma 4.1 Tf(x*) Tg2(x*) What happens if Tf is not orthogonal to the tangent plane? g1(x) = 0 x* Tg1(x*) g2(x) = 0 7
FONC for Equality Constraints(for max & min) • (i) x* a local optimum • (ii) objective function f • (iii) equality constraints g(x) = 0 • (iv) x* a regular point • then there exists m for • (v) f(x*) + Tg(x*) = 0 • (v) + g(x*) = 0 FONC 8
FONC for Equality Constraints in Terms of Lagrangian Function(for max & min) The FONC can be expressed as: 9
Example 4.1 • min 3x+4y, • s.t. g1(x, y) x2 + y2 – 4 = 0, g2(x, y) (x+1)2 + y2 – 9 = 0. Check the FONC for candidates of local minimum 10
Algebraic Form of Tangent Plane • M: the tangent plane of the constraints • M = {y| Tg(x*)y = 0} 11
Hessian of the Lagrangian Function • Lagrangian function gradient of L L f (x*) + Tg (x*) Hessian of L L(x*) F(x*) + TG(x*) 12
SONC for Equality Constraints • (i) x* a local optimum • (ii) objective function f • (iii) equality constraints g(x) = 0 • (iv) x* a regular point • SONC = FONC (f(x*)+Tg(x*) = 0 and g(x*) = 0) + L(x*) is positive semi-definite on M 13
SOSC for Equality Constraints • (i) x* a regular point • (ii) g(x*) = 0 • (iii) f(x*) + Tg(x*) = 0 for some m • (iv) L(x*) = F(x*) + TG(x*) (+)ve def on M • then x* being a strict local min 14
Examples • Examples 4.2 to 4.6 15