1 / 40

Kernel Methods for Implicit Surface Modeling B. Scholkopf, J. Giesen, S. Spalinger

Kernel Methods for Implicit Surface Modeling B. Scholkopf, J. Giesen, S. Spalinger. r92922120 黃邦洪 r93922020 楊惠菁 r93922038 柯政宏 r93944009 劉弘偉. Outline. Introduction Single-Class SVMs Slab SVMs Epsilon-SVR Implement Result. Introduction. Step 1:

Download Presentation

Kernel Methods for Implicit Surface Modeling B. Scholkopf, J. Giesen, S. Spalinger

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kernel Methods for Implicit Surface ModelingB. Scholkopf, J. Giesen, S. Spalinger r92922120 黃邦洪 r93922020 楊惠菁 r93922038 柯政宏 r93944009 劉弘偉

  2. Outline • Introduction • Single-Class SVMs • Slab SVMs • Epsilon-SVR • Implement • Result

  3. Introduction • Step 1: • Given a finite sample points belong to some hypersurface in Euclidean space R3 • The sample can be very large, noisy or sparse

  4. Introduction • Step 2: • Use SVM to find an implicit surface • f is the decision function in SVM • The zero set of f is a surface that approximates the sample points • Single-Class SVM v.s. Slab SVM

  5. Outline • Introduction • Single-Class SVMs • Slab SVMs • Epsilon-SVR • Implement • Result

  6. Single-Class SVM • Primary Object function • Concept

  7. Single-Class SVM • Dual Problem • Decision function

  8. Single-Class SVM • SVM TOY example

  9. Outline • Introduction • Single-Class SVMs • Slab SVMs • Epsilon-SVR • Implement • Result

  10. Slab SVM • Primary object function • Concept

  11. Slab SVM • Lagrangian dual optimization problem • Decision function

  12. Slab SVM • SVM TOY example

  13. Outline • Introduction • Single-Class SVMs • Slab SVMs • Epsilon-SVR • Implement • Result

  14. Epsilon-SVR • Primary object function • Concept

  15. Epsilon-SVR • Lagrangian dual optimization problem • The approximate function

  16. Outline • Introduction • Single-Class SVMs • Slab SVMs • Epsilon-SVR • Implement • Result

  17. Implement • Single-Class SVM • Use LIBSVM directly • Slab-SVM • Modify epsilon-SVR in LIBSVM to slab-SVM • The result is parameter-sensitive • Modification: • decision function • The result is good but we don’t really know how to explain

  18. Outline • Introduction • Single-Class SVMs • Slab SVMs • Epsilon-SVR • Implement • Result

  19. Result(1) - One-Class SVM • Bunny • Original: 35947 • One-Class: 2810

  20. Result(1) - Slab SVM • Bunny • Left: 8307。Right: 1013

  21. Result(1) - Slab SVM • Bunny • Predict accuracy: 97.74%

  22. Result(2) - One-Class SVM • Cactus • Original: 3337 • One-Class: 1617

  23. Result(2) - Slab SVM • Cactus • Left: 996 • Right: 817

  24. Result(2) - Slab SVM • Cactus • Predict accuracy: 96.9434%

  25. Result(3) - One-Class SVM • Dinosaur • Original: 56194 • One-Class: 44963

  26. Result(3) - Slab SVM • Dinosaur • Left: 13005。Right: 1018

  27. Result(3) - Slab SVM • Dinosaur • Predict accuracy: 97.43%

  28. Result(4) - One-Class SVM • Knot • Original: 10000 • One-Class: 8807

  29. Result(4) - Slab SVM • Knot • Left: 1176。Right: 1036

  30. Result(4) - Slab SVM • Knot • Predict accuracy: 96.9%

  31. Result(5) - One-Class SVM • Screwdriver • Original: 27152 • One-Class:21728

  32. Result(5) - Slab SVM • Screwdriver • Left: 6574 • Right: 884

  33. Result(5) - Slab SVM • Screwdriver • Predict accuracy: 97.1752%

  34. Result(6) - One-Class SVM • Rockerarm • Original: 40177 • One-Class: 4868

  35. Result(6) - Slab SVM • Rockerarm • Left: 2090 • Right: 1029

  36. Result(6) - Slab SVM • Rocker arm • Predict accuracy: 96.18%

  37. Result(7) - One-Class SVM • Hole • Original: 4000 • One-Class: 3224

  38. Result(7) - Slab SVM • Hole • Left: 648 • Right:1039

  39. Result(7) - Slab SVM • Hole • Predict accuracy: 93.475%

  40. Q&A Thank You

More Related