130 likes | 264 Views
ISI-MIP water sector: Data & results. The multi-model ensemble. Climate data:. Bias correction (for all ISI-MIP simulations):. Global hydrological models (GHMs):. HadGEM2-ES IPSL-CM5A-LR MIROC-ESM-CHEM GFDL-ESM2M NorESM1-M Output: Daily… temperature precipitation radiation
E N D
ISI-MIP water sector: Data & results
The multi-model ensemble Climate data: Bias correction (for all ISI-MIP simulations): Global hydrological models (GHMs): • HadGEM2-ES • IPSL-CM5A-LR • MIROC-ESM-CHEM • GFDL-ESM2M • NorESM1-M • Output: Daily… • temperature • precipitation • radiation • wind speed • surface pressure DBH H08* JULES LPJmL Mac-PDM.09 MATSIRO MPI-HM PCR-GLOBWB VIC WaterGAP* WBMplus *human water use/withdrawals available • Interpolated to 0.5° x 0.5° • Bias-corrected monthly means and daily variability, • using WATCH forcing data, • preserving future relative (temperature: absolute) trends (Hempel et al., 2013) incl. dynamic vegetation
First Results • Papers using ISI-MIP water sector data: • Wada Y., Wisser D., Eisner S., Flörke M., Gerten D., Haddeland I., Hanasaki N., Masaki Y., Portmann F.T., Stacke T., Tessler Z., and Schewe J. (2013): Multi-model projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett., doi:10.1002/grl.50686. • Haddeland I., et al. (2013): Global water resources affected by human interventions and climate change. PNAS, accepted • Piontek, F., Müller, C., Pugh, T.A.M, et al. (2013): Multisectoral climate impact hotspots in a warming world. PNAS (early online edition) [DOI:10.1073/pnas.1222471110] • Schewe, J. et al. (2013): Multi-model assessment of water scarcity under climate change. PNAS, accepted • RutgerDankers, Nigel W. Arnell, Douglas B. Clark, Pete D. Falloon, Balazs M. Fekete, Simon N. Gosling, Jens Heinke k, Hyungjun Kim, Yoshimitsu Masaki, Yusuke Satoh, and Tobias Stacke (2013): A first look at changes in flood hazard in the ISI-MIP ensemble, PNAS, accepted • J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. B. Clark, A. Itoh, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, X. Liu6, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Gosling, W. Franssen, and N. Arnell (2013): Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP, Earth System Dynamics. • Portmann F. T., Döll P., Eisner S., and Flörke M. (2013): Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections, Environ. Res. Lett. 8 024023 doi:10.1088/1748-9326/8/2/024023.
Discharge changes at 2°C* *above present Multi-model mean of relative change in annual mean discharge Schewe et al., 2013
Impact on population one model run, 30-year average RCP8.5 Measure of severe reduction in water availability: Decrease in annual discharge by more than 20% or 1σ Schewe et al., 2013
Water scarcity extreme water shortage chronic water shortage RCP8.5-constClim Use a ‘constant-climate’ run to separate the climate effect: = amplification by climate change constClim % % Schewe et al., 2013
Flood Hazard Dankers et al., 2013
Drought % change in drought days Prudhomme et al., under review
Human impacts on water cycle with human impacts (dams, withdrawals) naturalized runoff change Haddeland et al., 2013
Irrigation water demand Wada et al., 2013